【題目】對某居民最近連續(xù)幾年的月用水量進(jìn)行統(tǒng)計,得到該居民月用水量 (單位:噸)的頻率分布直方圖,如圖一.
(1)求的值,并根據(jù)頻率分布直方圖估計該居民月平均用水量;
(2)已知該居民月用水量與月平均氣溫(單位:℃)的關(guān)系可用回歸直線模擬.2019年當(dāng)?shù)卦缕骄鶜鉁?/span>統(tǒng)計圖如圖二,把2019年該居民月用水量高于和低于的月份作為兩層,用分層抽樣的方法選取5個月,再從這5個月中隨機抽取2個月,求這2個月中該居民恰有1個月用水量超過的概率.
【答案】(1),
(2)
【解析】
(1)根據(jù)頻率分布直方圖的圖形面積之和為1列式求解.再利用頻率分布直方圖計算平均數(shù)的方法求解即可.
(2)利用枚舉法將所有可能的情況列舉,再根據(jù)古典概率的求解方法計算即可.
(1)由圖一可知,
該居民月平均用水量約為
(2)由回歸直線方程知,對應(yīng)的月平均氣溫剛好為
,
再根據(jù)圖二可得,該居民2019年5月和10月的用水量剛好為,且該居民2019年有4個月每月用水量超過,有6個月每月用水量低于,
因此,用分層抽樣的方法得到的樣本中,有2個月(記為)每月用水量超過,有3個月(記為)每月用水量低于,從中抽取2個,有共10種結(jié)果,
其中恰有一個月用水量超過的有共6種結(jié)果,
設(shè)“這2個月中恰有1個月用水量超過”為事件,則
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)雙曲線方程為,過其右焦點且斜率不為零的直線與雙曲線交于A,B兩點,直線的方程為,A,B在直線上的射影分別為C,D.
(1)當(dāng)垂直于x軸,時,求四邊形的面積;
(2),的斜率為正實數(shù),A在第一象限,B在第四象限,試比較與1的大。
(3)是否存在實數(shù),使得對滿足題意的任意,直線和直線的交點總在軸上,若存在,求出所有的值和此時直線和交點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為實數(shù).
(1)討論在上的奇偶性;(只要寫出結(jié)論,不需要證明)
(2)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時,求函數(shù)在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處的切線經(jīng)過點
(1)討論函數(shù)的單調(diào)性;
(2)若不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓方程為.
(1)設(shè)橢圓的左右焦點分別為、,點在橢圓上運動,求的值;
(2)設(shè)直線和圓相切,和橢圓交于、兩點,為原點,線段、分別和圓交于、兩點,設(shè)、的面積分別為、,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)為的導(dǎo)函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,證明;
(Ⅲ)設(shè)為函數(shù)在區(qū)間內(nèi)的零點,其中,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱中,底面為菱形,且側(cè)棱 其中為的交點.
(1)求點到平面的距離;
(2)在線段上,是否存在一個點,使得直線與垂直?若存在,求出線段的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,焦距為,拋物線的焦點F是橢圓的頂點.
(1)求與的標(biāo)準(zhǔn)方程;
(2)上不同于F的兩點P,Q滿足以PQ為直徑的圓經(jīng)過F,且直線PQ與相切,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列和滿足:,,,且對一切,均有.
(1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;
(2)若,求數(shù)列的前n項和;
(3)設(shè)(),記數(shù)列的前n項和為,問:是否存在正整數(shù),對一切,均有恒成立.若存在,求出所有正整數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com