已知二次函數(shù)f(x)=ax2+bx+c,滿足條件f(2+x)=f(2-x),其圖象的頂點(diǎn)為A,又圖象與x軸交于點(diǎn)B、C,其中B點(diǎn)的坐標(biāo)為(-1,0),△ABC的面積S=54,試確定這個二次函數(shù)的解析式
 
分析:由f(2+x)=f(2-x),得到對稱軸-
b
2a
=2
,由圖象與x軸交于B點(diǎn)的坐標(biāo)為(-1,0),得c(5,0)從而得到a-b+c=0,25a+5b+c=0
再△ABC的面積S=54,從而求解.
解答:解:∵二次函數(shù)f(x)=ax2+bx+c,滿足條件f(2+x)=f(2-x),
-
b
2a
=2

又∵圖象與x軸交于B點(diǎn)的坐標(biāo)為(-1,0),
∴c(5,0)
∴a-b+c=0,25a+5b+c=0
又∵△ABC的面積S=54
1
2
×6×
4ac-b2
4a
=54

∴解得:a=2,b=-8,c=-10或a=-2,b=8,c=-26
點(diǎn)評:本題主要考查二次函數(shù)的對稱軸,頂點(diǎn)與軸的交點(diǎn)和平面圖形,將形的問題轉(zhuǎn)化為數(shù)的形式解決.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
(I)若函數(shù)的圖象經(jīng)過原點(diǎn),且滿足f(2)=0,求實(shí)數(shù)m的值.
(Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(diǎn)(0,1),且與x軸有唯一的交點(diǎn)(-1,0).
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-16x+q+3.
(1)若函數(shù)在區(qū)間[-1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍;
(2)若記區(qū)間[a,b]的長度為b-a.問:是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時,f(x)的值域?yàn)閰^(qū)間D,且D的長度為12-t?請對你所得的結(jié)論給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時,函數(shù)φ(x)=g(x)-kln(x-1)存在極值點(diǎn),并求出極值點(diǎn);
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知二次函數(shù)f(x)的圖象與x軸的兩交點(diǎn)為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數(shù)f(x)的圖象的頂點(diǎn)是(-1,2),且經(jīng)過原點(diǎn),求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案