已知橢圓
中心在原點,焦點在坐標軸上,直線
與橢圓
在第一象限內(nèi)的交點是
,點
在
軸上的射影恰好是橢圓
的右焦點
,橢圓
另一個焦點是
,且
(1)求橢圓
的方程;
(2)直線
過點
,且與橢圓
交于
兩點,求
的內(nèi)切圓面積的最大值
(1)設(shè)橢圓方程為
,點
在直線
上,且點
在
軸上的射影恰好是橢圓
的右焦點
, 則點
為
,而
為
,則有
則有
,所以
又因為
所以
所以橢圓方程為:
-----------------------5分
(2)由(1)知
,過點
的直線與橢圓
交于
兩點,則
的周長為
,則
(
為三角形內(nèi)切圓半徑),當
的面積最大時,其內(nèi)切圓面積最大
設(shè)直線
方程為:
,
,則
所以
令
,則
,所以
,而
在
上單調(diào)遞增,
所以
,當
時取等號,即當
時,
的面積最大值為3
結(jié)合
,得
的最小值為
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知過點D(0,-2)作拋物線C
1:
=2py(p>0)的切線
l,切點A在第二象限.
(Ⅰ)求點A的縱坐標;
(Ⅱ)若離心率為
的橢圓
(a>b>0)恰好經(jīng)過點A,設(shè)直線
l交橢圓的另一點為B,記直線
l,OA,OB的斜率分別為k,k
1,k
2,若k
1+2k
2=4k,求橢圓方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
是橢圓的左、右頂點,
是橢圓上任意一點,且直線
的斜率分別為
,若
的最小值為
,則橢圓的離心率為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)已知橢圓
的方程為:
,其焦點在
軸上,離心率
.
(1)求該橢圓的標準方程;
(2)設(shè)動點
滿足
,其中M,N是橢圓
上的點,直線OM與ON的斜率之積為
,求證:
為定值.
(3)在(2)的條件下,問:是否存在兩個定點
,使得
為定值?若存在,給出證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如題21圖,已知離心率為
的橢圓
過點M(2,1),O為坐標原點,平行于OM的直線
交橢圓C于不同的兩點A、B。
(1)求
面積的最大值;
(2)證明:直線MA、MB與x軸圍成一個等腰三角形。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若橢圓
(m>n>0)和雙曲線
(a>b>0)有相同的焦點F
1,F(xiàn)
2,P是兩條曲線的一個交點,則|PF
1|·|PF
2|的值是 (。
A.m-a | B. | C.m2-a2 | D. |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
G:
+
y2=1.過點(
m,0)作圓
x2+
y2=1的切線
l交橢圓
G于
A,
B兩點.
(1)求橢圓
G的焦點坐標和離心率;
(2)將|
AB|表示為
m的函數(shù),并求|
AB|的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
.如圖,設(shè)F
2為橢圓
的右焦點,點P在橢圓上,△POF
2是面積為
的正三角形,則b
2的值是
▲
查看答案和解析>>