【題目】已知函數(shù)f(x)= x3 x2+logax,(a>0且a≠1)為定義域上的增函數(shù),f'(x)是函數(shù)f(x)的導(dǎo)數(shù),且f'(x)的最小值小于等于0. (Ⅰ)求a的值;
(Ⅱ)設(shè)函數(shù) ,且g(x1)+g(x2)=0,求證:

【答案】(Ⅰ)解: , 由f(x)為增函數(shù)可得,f'(x)≥0恒成立,即 ,得 ,
設(shè)m(x)=2x3﹣3x2 , 則m'(x)=6x2﹣6x(x>0),
由m'(x)=6x(x﹣1)>0,得x>1,由m'(x)=6x(x﹣1)<0,得0<x<1.
∴m(x)在(0,1)上減,在(1,+∞)上增,在1處取得極小值即最小值,
∴m(x)min=m(1)=﹣1,則 ,即 ,
當a>1時,易知a≤e,當0<a<1時,則 ,這與 矛盾,從而不能使得f'(x)≥0恒成立,
∴a≤e;
由f'(x)min≤0可得, ,即
由之前討論可知, ,當1>a>0時, 恒成立,
當a>1時,由1≥ ,得a≥e,
綜上a=e;
(Ⅱ)證明: ,
∵g(x1)+g(x2)=0,
,

,


令x1x2=t,g(t)=lnt﹣t,
,g(t)在(0,1)上增,在(1,+∞)上減,g(t)≤g(1)=﹣1,
,
整理得 ,
解得 (舍),

【解析】(Ⅰ)求出原函數(shù)的導(dǎo)函數(shù),由題意可得f'(x)≥0恒成立,即 ,構(gòu)造函數(shù)m(x)=2x3﹣3x2 , 利用導(dǎo)數(shù)求其最小值,由其最小值大于等于 可得a≤e;再由f'(x)min≤0求得a≥e,可得a=e;(Ⅱ)由 ,結(jié)合g(x1)+g(x2)=0,可得 ,令x1x2=t,g(t)=lnt﹣t,求導(dǎo)可得g(t)≤g(1)=﹣1,得到 ,求解得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在[0,+∞)上的函數(shù)f(x)滿足f(x)=2f(x+2),當x∈[0,2)時,f(x)=﹣2x2+4x.設(shè)f(x)在[2n﹣2,2n)上的最大值為an(n∈N*),且{an}的前n項和為Sn , 則Sn=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n(n∈N*)項和為Sn , a3=3,且λSn=anan+1 , 在等比數(shù)列{bn}中,b1=2λ,b3=a15+1. (Ⅰ)求數(shù)列{an}及{bn}的通項公式;
(Ⅱ)設(shè)數(shù)列{cn}的前n(n∈N*)項和為Tn , 且 ,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將圓x2+y2=1上每一點的縱坐標不變,橫坐標變?yōu)樵瓉淼? ,得曲線C. (Ⅰ)寫出C的參數(shù)方程;
(Ⅱ)設(shè)直線l:3x+y+1=0與C的交點為P1、P2 , 以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段P1P2的中點且與l垂直的直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三個內(nèi)角A,B,C的對應(yīng)邊分別為a,b,c,且 .則使得sin2B+sin2C=msinBsinC成立的實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x﹣6)2+(y﹣8)2=1和兩點A(﹣m,0),B(m,0)(m>0),若對圓上任意一點P,都有∠APB<90°,則m的取值范圍是(
A.(9,10)
B.(1,9)
C.(0,9)
D.(9,11)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=BC=a,點P在邊AB上,設(shè) (λ>0),過點P作PE∥BC交AC于E,作PF∥AC交BC于F.沿PE將△APE翻折成△A′PE,使平面A′PE⊥平面ABC;沿PF將△BPF翻折成△B′PF,使平面B′PF⊥平面ABC.
(1)求證:B′C∥平面A′PE;
(2)是否存在正實數(shù)λ,使得二面角C﹣A′B′﹣P的大小為60°?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若曲線f(x)= (e﹣1<x<e2﹣1)和g(x)=﹣x3+x2(x<0)上分別存在點A、B,使得△OAB是以原點O為直角頂點的直角三角形,且斜邊AB的中點在y軸上,則實數(shù)a的取值范圍是(
A.(e,e2
B.(e,
C.(1,e2
D.[1,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)= x3+ax2+bx+c有極值點x1 , x2(x1>x2),f(x1)=x1 , 則關(guān)于x的方程[f(x)]2+2af(x)+b=0的不同實數(shù)根的個數(shù)是

查看答案和解析>>

同步練習(xí)冊答案