【題目】天上有些恒星的亮度是會(huì)變化的,其中一種稱為造父(型)變星,本身體積會(huì)膨脹收縮造成亮度周期性的變化.第一顆被描述的經(jīng)典造父變星是在1784.

上圖為一造父變星的亮度隨時(shí)間的周期變化圖,其中視星等的數(shù)值越小,亮度越高,則此變星亮度變化的周期、最亮?xí)r視星等,分別約是(

A.5.5,3.7B.5.44.4C.6.5,3.7D.5.54.4

【答案】A

【解析】

結(jié)合圖象可知,兩個(gè)相鄰最高點(diǎn)或最低點(diǎn)的位置橫向差即為周期,再結(jié)合視星等的數(shù)值越小,亮度越高,取視星等的最小數(shù)值即可得出最亮?xí)r的視星等.

根據(jù)圖象可知,兩個(gè)相鄰最高點(diǎn)或最低點(diǎn)的位置橫向相差約為5.5,故可以估計(jì)周期約為5.5

又視星等的數(shù)值越小,亮度越高,故最亮?xí)r視星等約為3.7;

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|xa||x5|.

1)當(dāng)a=2時(shí),求證:﹣3≤f(x)≤3;

2)若關(guān)于x的不等式f(x)≤x28x+20R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx,則函數(shù)yffx))﹣1的所有零點(diǎn)構(gòu)成的集合為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,求的取值范圍;

2)若存在唯一的極小值點(diǎn),求的取值范圍,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)際上通常用年齡中位數(shù)指標(biāo)作為劃分國(guó)家或地區(qū)人口年齡構(gòu)成的標(biāo)準(zhǔn):年齡中位數(shù)在20歲以下為年輕型人口;年齡中位數(shù)在2030歲為成年型人口;年齡中位數(shù)在30歲以上為老齡型人口.

如圖反映了我國(guó)全面放開(kāi)二孩政策對(duì)我國(guó)人口年齡中位數(shù)的影響.據(jù)此,對(duì)我國(guó)人口年齡構(gòu)成的類型做出如下判斷:①建國(guó)以來(lái)直至2000年為成年型人口;②從2010年至2020年為老齡型人口;③放開(kāi)二孩政策之后我國(guó)仍為老齡型人口.其中正確的是(

A.②③B.①③C.D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知等邊的邊長(zhǎng)為3,點(diǎn),分別是邊,上的點(diǎn),且,.如圖2,將沿折起到的位置.

1)求證:平面平面;

2)給出三個(gè)條件:①;②二面角大小為;③到平面的距離為.在中任選一個(gè),補(bǔ)充在下面問(wèn)題的條件中,并作答:

在線段上是否存在一點(diǎn),使三棱錐的體積為,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

注:如果多個(gè)條件分別解答,按第一個(gè)解答給分。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等比數(shù)列中,已知設(shè)數(shù)列的前n項(xiàng)和為,且

1)求數(shù)列通項(xiàng)公式;

2)證明:數(shù)列是等差數(shù)列;

3)是否存在等差數(shù)列,使得對(duì)任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,底面,點(diǎn)的中點(diǎn),點(diǎn)為點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),,.

1)求證:平面平面;

2)直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線lxy0將圓O分成的兩部分的面積之比為( )

A.(4π):(8π)B.(4π3):(8π+3)

C.(2π2):(10π+2)D.(2π3):(10π+3)

查看答案和解析>>

同步練習(xí)冊(cè)答案