(2013•肇慶一模)2個(gè)好朋友一起去一家公司應(yīng)聘,公司人事主管通知他們面試時(shí)間時(shí)說:“我們公司要從面試的人中招3個(gè)人,你們都被招聘進(jìn)來的概率是
1
70
”.根據(jù)他的話可推斷去面試的人有
21
21
個(gè)(用數(shù)字作答).
ξ 0 1 2 3
P
6
125
a b
24
125
分析:設(shè)出去公司面試的人數(shù)n,從面試的人數(shù)中任取3人的方法種數(shù)是
C
3
n
,兩人都被聘用的方法種數(shù)是
C
1
n-2
.則兩人都被聘用的概率即為
C
1
n-2
C
3
n
解答:解:設(shè)去面試的人數(shù)為n,
則2人都被招聘的概率為
C
1
n-2
C
3
n
=
1
70

整理得n2-n-420=0.解得n=-20(舍)或n=21.
所以,去面試的是21人.
故答案為21.
點(diǎn)評(píng):本題考查了等可能事件的概率,解答的關(guān)鍵是正確理解題意,求出從面試人數(shù)中任取3人的事件數(shù)及兩人都被聘用的基本事件個(gè)數(shù),是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶一模)已知等差數(shù)列{an},滿足a3+a9=8,則此數(shù)列的前11項(xiàng)的和S11=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶一模)某市電視臺(tái)為了宣傳舉辦問答活動(dòng),隨機(jī)對(duì)該市15~65歲的人群抽樣了x•46%=230人,回答問題統(tǒng)計(jì)結(jié)果如圖表所示.
組號(hào) 分組 回答正確
的人數(shù)
回答正確的人數(shù)
占本組的概率
第1組 [15,25) 5 0.5
第2組 [25,35) a 0.9
第3組 [35,45) 27 x
第4組 [45,55) B 0.36
第5組 [55,65) 3 y
(Ⅰ)分別求出a,b,x,y的值;
(Ⅱ)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(Ⅲ)在(Ⅱ)的前提下,電視臺(tái)決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求:所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶一模)已知函數(shù)f(x)=Asin(4x+φ)(A>0,0<φ<π)在x=
π
16
時(shí)取得最大值2.
(1)求f(x)的最小正周期;
(2)求f(x)的解析式;
(3)若α∈[-
π
2
,0]
,f(
1
4
α+
π
16
)=
6
5
,求sin(2α-
π
4
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶一模)(坐標(biāo)系與參數(shù)方程選做題) 
已知直線l1=
x=1+3t
y=2-4t
(t為參數(shù))與直線l2:2x-4y=5相交于點(diǎn)B,又點(diǎn)A(1,2),則|AB|=
5
2
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶一模)已知Sn是數(shù)列{an}的前n項(xiàng)和,且a1=1,nan+1=2Sn(n∈N*)
(1)求a2,a3,a4的值;
(2)求數(shù)列{an}的通項(xiàng)an;
(3)設(shè)數(shù)列{bn}滿足b1=
1
2
,bn+1=
1
ak
b
2
n
+bn
,求證:當(dāng)n≤k時(shí)有bn<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案