已知橢圓的離心率為,且經(jīng)過點(diǎn),圓的直徑為的長軸.如圖,是橢圓短軸端點(diǎn),動直線過點(diǎn)且與圓交于兩點(diǎn),垂直于交橢圓于點(diǎn).

(1)求橢圓的方程;
(2)求 面積的最大值,并求此時直線的方程.

(1) (2)

解析試題分析:(1)已知橢圓的離心率為即可得到的關(guān)系式,再結(jié)合橢圓過點(diǎn),代入橢圓方程組成方程組可求解得到橢圓方程; (2) 要求面積可先求兩個弦長度,是一直線與圓相交得到的弦長,可采用圓的弦長公式,而是橢圓的弦長,使用公式求解,把面積表示成變量的函數(shù), 求其最值時可用換元法求解.對當(dāng)斜率為0時要單獨(dú)討論.
試題解析:(1)由已知得到,所以,即.
又橢圓經(jīng)過點(diǎn),故,
解得,
所以橢圓的方程是
(2)因?yàn)橹本且都過點(diǎn)
①當(dāng)斜率存在且不為0時,設(shè)直線,直線,即,
所以圓心到直線的距離為,所以直線被圓所截弦
得,
所以
.
所以.
,則,

當(dāng),即時,等號成立,
面積的最大值為,此時直線的方程為
②當(dāng)斜率為0時,即,此時
當(dāng)的斜率不存在時,不合題意;
綜上, 面積的最大值為,此時直線的方程為.
考點(diǎn):直線與圓的位置關(guān)系,弦長公式,換元法求函數(shù)最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓x2+y2-6mx-2(m-1)y+10m2-2m-24=0(m∈R).
(1)求證:不論m取什么值,圓心在同一直線l上;
(2)與l平行的直線中,哪些與圓相交,相切,相離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,過圓O外一點(diǎn)M作它的一條切線,切點(diǎn)為A,過A點(diǎn)作直線AP垂直直線OM,垂足為P.

(1)證明:OM·OP=OA2
(2)N為線段AP上一點(diǎn),直線NB垂直直線ON,且交圓O于B點(diǎn).過B點(diǎn)的切線交直線ON于K.證明:∠OKM=90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)求圓心在軸上,且與直線相切于點(diǎn)的圓的方程;
(2)已知圓過點(diǎn),且與圓關(guān)于直線對稱,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)A(-3,0),B(3,0),動點(diǎn)P滿足|PA|=2|PB|.
(1)若點(diǎn)P的軌跡為曲線C,求此曲線的方程;
(2)若點(diǎn)Q在直線l1xy+3=0上,直線l2經(jīng)過點(diǎn)Q且與曲線C只有一個公共點(diǎn)M,求|QM|的最小值.?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知以點(diǎn)C (t∈R,t≠0)為圓心的圓與x軸交于點(diǎn)O、A,與y軸交于點(diǎn)O、B,其中O為原點(diǎn).
(1)求證:△AOB的面積為定值;
(2)設(shè)直線2xy-4=0與圓C交于點(diǎn)M、N,若|OM|=|ON|,求圓C的方程;
(3)在(2)的條件下,設(shè)PQ分別是直線lxy+2=0和圓C的動點(diǎn),求|PB|+|PQ|的最小值及此時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓經(jīng)過點(diǎn),且圓心在直線上.
(1)求圓的方程;
(2)若點(diǎn)為圓上任意一點(diǎn),求點(diǎn)到直線的距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的左右頂點(diǎn)分別為,離心率.過該橢圓上任一點(diǎn)P作PQ⊥x軸,垂足為Q,點(diǎn)C在QP的延長線上,且
(1)求橢圓的方程;
(2)求動點(diǎn)C的軌跡E的方程;
(3)設(shè)直線AC(C點(diǎn)不同于A,B)與直線交于點(diǎn)R,D為線段RB的中點(diǎn),試判斷直線CD與曲線E的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,銳角的內(nèi)心為,過點(diǎn)作直線的垂線,垂足為,點(diǎn)為內(nèi)切圓與邊的切點(diǎn).

(Ⅰ)求證:四點(diǎn)共圓;
(Ⅱ)若,求的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案