設(shè)函數(shù)f(x)=3sin(2x-
π
3
)
的圖象為C,給出下列命題:
①圖象C關(guān)于直線x=
11
12
π
對(duì)稱;
②函數(shù)f(x)在區(qū)間(-
π
12
,
12
)
內(nèi)是增函數(shù);
③函數(shù)f(x)是奇函數(shù);
④圖象C關(guān)于點(diǎn)(
π
3
,0)
對(duì)稱.
⑤|f(x)|的周期為π
其中,正確命題的編號(hào)是______.(寫(xiě)出所有正確命題的編號(hào))
①∵sin(2×
11π
12
-
π
3
)
=sin
2
=-1,∴圖象C關(guān)于直線x=
11
12
π
對(duì)稱,正確;
②若x∈(-
π
12
,
12
)
,則-
π
2
<2x-
π
3
π
2
,∴sin(2x-
π
3
)
在區(qū)間(-
π
12
,
12
)
上單調(diào)遞增,從而函數(shù)f(x)在區(qū)間(-
π
12
,
12
)
內(nèi)是增函數(shù),故正確;
③f(-x)=3sin(-2x-
π
3
)
=-3sin(2x+
π
3
)
-3sin(2x-
π
3
)
,∴函數(shù)f(x)不是奇函數(shù),不正確;
f(
π
3
)
=3sin(2×
π
3
-
π
3
)
=3sin
π
3
=
3
2
≠0,故圖象C關(guān)于點(diǎn)(
π
3
,0)
不對(duì)稱,不正確;
⑤∵|f(x+
π
2
)|
=|3sin[2(x+
π
2
)-
π
3
]|
=|-3sin(2x-
π
3
)|
=|3sin(2x-
π
3
)|
=|f(x)|,而|f(x+
π
4
)|≠|(zhì)f(x)|
,因此|f(x)|的周期為
π
2
,故不正確.
綜上可知:只有①②正確.
故答案為①②.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
3
sinθ
3
x3+
cosθ
2
x2+4x-1
,其中θ∈[0, 
6
]
,則導(dǎo)數(shù)f'(-1)的取值范圍(  )
A、[3,6]
B、[3, 4+
3
]
C、[4-
3
, 6]
D、[4-
3
, 4+
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=(
3
sinωx+cosωx)cosωx
,(其中0<ω<2)
若f(x)的最小正周期為π,求當(dāng)-
π
6
≤x≤
π
3
時(shí),f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣東模擬)設(shè)函數(shù)f(x)=3sin(ωx+φ)(ω>0,-
π
2
<φ<
π
2
)
的圖象關(guān)于直線x=
2
3
π
對(duì)稱,它的周期是π,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=3sin(ωx+
π
6
)
,(ω>0),x∈(-∞,+∞),且以
π
2
為最小正周期.
(1)求f(0);
(2)求f(x)的解析式;
(3)已知f(
α
4
+
π
12
)=
9
5
,求sinαtanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=3sin(2x-
34
π)
,
(1)求y=f(x)的振幅,周期和初相;
(2)求y=f(x)的最大值并求出此時(shí)x值組成的集合.
(3)求y=f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案