如圖所示,D、E分別是△ABC的邊AB、AC上的點,DE∥BC,且
AD
DB
=2,那么△ADE與四邊形DBCE的面積比是(  )
A、
2
3
B、
2
5
C、
4
5
D、
4
9
考點:平行線分線段成比例定理
專題:選作題,立體幾何
分析:根據(jù)已知可得到△ADE∽△ABC,可得到其相似比與面積比,從而不難求得△ADE與四邊形DBCE的面積的比.
解答: 解:∵
AD
DB
=2,∴
AD
AB
=
2
3

又∵DE∥BC
∴△ADE∽△ABC,相似比是2:3,面積的比是4:9
設(shè)△ADE的面積是4a,則△ABC的面積是9a,四邊形DBCE的面積是5a
∴△ADE與四邊形DBCE的面積的比是
4
5

故選:C.
點評:本題主要考查了相似三角形的判定與性質(zhì)的理解及運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足:a1=
1
2
,an+1=
a
2
n
+an
,n∈N*bn=
1
1+an
,Sn=b1+b2+…+bn,Pn=b1b2…bn,則Sn+2Pn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率e=2,右焦點F(c,0),方程ax2+bx-c=0的兩個根分別為x1,x2,則點P(x1,x2)在(  )
A、圓x2+y2=10內(nèi)
B、圓x2+y2=10上
C、圓x2+y2=10外
D、以上三種情況都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin2x-sinx+2的最大值是( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
x
+mx在[1,2]上是增函數(shù),則m的取值范圍為( 。
A、[
1
4
,1]
B、[1,4]
C、[1,+∞)
D、(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的焦距為2c,焦點到雙曲線C的漸近線的距離為
c
2
,則雙曲線C的離心率為( 。
A、2
B、
3
C、
6
2
D、
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記Sk=1k+2k+3k+…+nk,當(dāng)k=1,2,3,…時,觀察下列等式:
S1=
1
2
n2+
1
2
n,
S2=
1
3
n3+
1
2
n2+
1
6
n,
S3=
1
4
n4+
1
2
n3+
1
4
n2
S4=
1
5
n5+
1
2
n4+
1
3
n3-
1
30
n,
S5=An6+
1
2
n5+
5
12
n4+Bn2,….
可以推測A-B等于(  )
A、
2
3
B、
1
3
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x
sin2x
,x∈(-
π
2
,0)∪(0,
π
2
)的圖象可能是下列圖象中的( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,1),
b
=(1,-2)
(1)求
a
+2
b

(2)若|
c
|=1,且
a
-
c
a
-2
c
垂直,求
a
c
的夾角θ的余弦值.

查看答案和解析>>

同步練習(xí)冊答案