【題目】已知直線: 為給定的正常數(shù), 為參數(shù), )構(gòu)成的集合為,給出下列命題:

①當(dāng)時(shí), 中直線的斜率為;

中的所有直線可覆蓋整個(gè)坐標(biāo)平面.

③當(dāng)時(shí),存在某個(gè)定點(diǎn),該定點(diǎn)到中的所有直線的距離均相等;

④當(dāng)時(shí), 中的兩條平行直線間的距離的最小值為;

其中正確的是__________(寫出所有正確命題的編號(hào)).

【答案】③④

【解析】①當(dāng) 時(shí), , 中直線的斜率為 ,故不正確;
②根據(jù),可知中所有直線不可能經(jīng)過(guò)一個(gè)定點(diǎn),不正確;
③當(dāng) 時(shí),方程為 ,存在定點(diǎn) ,該定點(diǎn)到中的所有直線的距離均相等;
④因?yàn)?/span> 既滿足直線的方程,
也滿足橢圓的方程,且把直線的方程代入橢圓

的方程可得 ,當(dāng) 時(shí), 為橢圓的切線,
當(dāng) 中兩直線分別與橢圓相切于短軸兩端點(diǎn)時(shí),
它們間的距離為 ,即為最小距離,即最小值為 ,故④正確.

故答案為:③④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某校從理科甲班抽取60人,從文科乙班抽取50人參加環(huán)保知識(shí)測(cè)試.

優(yōu)秀人數(shù)

非優(yōu)秀人數(shù)

總計(jì)

甲班

乙班

30

總計(jì)

60

(Ⅰ)根據(jù)題目完成列聯(lián)表,并據(jù)此判斷是否有的把握認(rèn)為環(huán)保知識(shí)成績(jī)優(yōu)秀與學(xué)生的文理分類有關(guān).

(Ⅱ)現(xiàn)已知, , 三人獲得優(yōu)秀的概率分別為, , ,設(shè)隨機(jī)變量表示, , 三人中獲得優(yōu)秀的人數(shù),求的分布列及期望

附:

0.100

0.050

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 若4Sn=(2n﹣1)an+1+1,且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)cn= ,數(shù)列{cn}的前n項(xiàng)和為Tn
①求Tn;
②對(duì)于任意的n∈N*及x∈R,不等式kx2﹣6kx+k+7+3Tn>0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}滿足an+1+(﹣1)nan=2n﹣1,則{an}的前60項(xiàng)和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)的動(dòng)圓恒與軸相切,設(shè)切點(diǎn)為是該圓的直徑.

(Ⅰ)求點(diǎn)軌跡的方程;

(Ⅱ)當(dāng)不在y軸上時(shí),設(shè)直線與曲線交于另一點(diǎn),該曲線在處的切線與直線交于點(diǎn).求證: 恒為直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D,E分別為△ABC邊AB,AC的中點(diǎn),直線DE交△ABC的外接圓于F,G兩點(diǎn),若CF∥AB,證明:

(1)CD=BC;
(2)△BCD∽△GBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了得到函數(shù)y=sin(2x﹣ )的圖象,可以將函數(shù)y=cos2x的圖象(
A.向右平移
B.向右平移
C.向左平移
D.向左平移

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,四邊形是菱形,,二面角, .

(Ⅰ)求證:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位有工程師6人,技術(shù)員12人,技工18人,要從這些人中取一個(gè)容量為n的樣本;如果采用系統(tǒng)抽樣和分層抽樣方法抽取,無(wú)須剔除個(gè)體;如果樣本容量增加1個(gè),則在采用系統(tǒng)抽樣時(shí)需要在總體中先剔除一個(gè)個(gè)體,則n的值為

查看答案和解析>>

同步練習(xí)冊(cè)答案