【題目】已知函數(shù).

(1)若曲線在點處的切線經(jīng)過坐標(biāo)原點,求的值;

(2)若存在極小值,使不等式恒成立,求實數(shù)的范圍.

【答案】12

【解析】

1)求出導(dǎo)函數(shù),即可求出在點處的切線斜率,利用過點和坐標(biāo)原點,列方程求出

2)分類討論存在極小值先減后增,求出的范圍并求出,則恒成立轉(zhuǎn)化為恒成立,構(gòu)造函數(shù),通過求導(dǎo)求其最大值即可得出結(jié)果。

(1)函數(shù)導(dǎo)函數(shù),

所以曲線在點處切線的斜率,

,因為切線過坐標(biāo)原點,所以,

(2)由(Ⅰ)知,若,則上恒成立,在定

義域內(nèi)單調(diào)遞增,沒有極值;

,當(dāng)時,,當(dāng)時,,所以上單調(diào)

遞減,在上單調(diào)遞增,所以處取得極小值,所以

,

設(shè),,則,

因為,,,,所以上單調(diào)遞增,

上單調(diào)遞減,所以,

所以實數(shù)的范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=a﹣(a∈R)

(Ⅰ)判斷函數(shù)f(x)在R上的單調(diào)性,并用單調(diào)函數(shù)的定義證明;

(Ⅱ)是否存在實數(shù)a使函數(shù)f(x)為奇函數(shù)?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)市場調(diào)查,某商品每噸的價格為萬元時,該商品的月供給量為噸,;月需求量為噸,,當(dāng)該商品的需求量大于供給量時,銷售量等于供給量;當(dāng)該商品的需求量不大于供給量時,銷售量等于需求量,該商品的月銷售額等于月銷售量與價格的乘積.

1)已知,若某月該商品的價格為x=7,求商品在該月的銷售額(精確到1元);

2)記需求量與供給量相等時的價格為均衡價格,若該商品的均衡價格不低于每噸6萬元,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第26屆世界大學(xué)生夏季運動會將于2011年8月12日到23日在深圳舉行 ,為了搞好接待工作,組委會在某學(xué)院招募了12名男志愿者和18名女志愿者。將這30名志愿者的身高編成如右所示的莖葉圖(單位:cm):

若身高在175cm以上(包括175cm)定義為“高個子”,身高在175cm以下(不包括175cm)定義為“非高個子”,且只有“女高個子”才擔(dān)任“禮儀小姐”。

(1)如果用分層抽樣的方法從“高個子”和“非高個子”中提取5人,再從這5人中選2人,那么至少有一人是“高個子”的概率是多少?

(2)若從所有“高個子”中選3名志愿者,用表示所選志愿者中能擔(dān)任“禮儀小姐”的人數(shù),試寫出的分布列,并求的數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2022年北京冬奧運動會即第24屆冬季奧林匹克運動會將在202224日至220日在北京和張家口舉行,某研究機構(gòu)為了了解大學(xué)生對冰壺運動的興趣,隨機從某大學(xué)生中抽取了100人進行調(diào)查,經(jīng)統(tǒng)計男生與女生的人數(shù)比為,男生中有20人表示對冰壺運動有興趣,女生中有15人對冰壺運動沒有興趣.

1)完成列聯(lián)表,并判斷能否有把握認(rèn)為“對冰壺運動是否有興趣與性別有關(guān)”?

有興趣

沒有興趣

合計

20

15

合計

100

2)用分層抽樣的方法從樣本中對冰壺運動有興趣的學(xué)生中抽取6人,求抽取的男生和女生分別為多少人?若從這6人中選取兩人作為冰壺運動的宣傳員,求選取的2人中恰好有1位男生和1位女生的概率.

附:,其中

0.150

0.100

0.050

0.025

0.010

2.072

2.076

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)分別是橢圓C的左、右焦點,過且斜率不為零的動直線l與橢圓C交于AB兩點.

的周長;

若存在直線l,使得直線,AB與直線分別交于P,Q,R三個不同的點,且滿足P,QRx軸的距離依次成等比數(shù)列,求該直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的焦點在軸上,虛軸長為4,且與雙曲線有相同漸近線.

1)求雙曲線的方程.

2)過點的直線與雙曲線的異支相交于兩點,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“微信搶紅包”自2015年以來異常火爆,在某個微信群某次進行的搶紅包活動中,若所發(fā)紅包的總金額為8元,被隨機分配為1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人搶,每人只能搶一次,則甲、乙二人搶到的金額之和不低于3元的概率是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

(1)寫出直線的普通方程及曲線的直角坐標(biāo)方程;

(2)已知點,點,直線過點且與曲線相交于兩點,設(shè)線段的中點為,求的值.

查看答案和解析>>

同步練習(xí)冊答案