已知拋物線C:y2=2px (p>0)上一點(diǎn)P(6,m)到其焦點(diǎn)F的距離為7,則拋物線C的以點(diǎn)M(2,1)為中點(diǎn)的弦AB所在直線的方程為
48x-y-95=0
48x-y-95=0
分析:由拋物線C:y2=2px (p>0)上一點(diǎn)P(6,m)到其焦點(diǎn)F的距離為7,推導(dǎo)出拋物線C:y2=24x.由此利用點(diǎn)差法能求出拋物線C的以點(diǎn)M(2,1)為中點(diǎn)的弦AB所在直線方程.
解答:解:準(zhǔn)線x=-
p
2

由拋物線定義,M到焦點(diǎn)距離等于到準(zhǔn)線距離,
M到準(zhǔn)線距離=1-(-
p
2
)=7,p=12.
∴拋物線C:y2=24x.
設(shè)拋物線C的以點(diǎn)M(2,1)為中點(diǎn)的弦AB義拋物線C于A(x1,y1),B(x2,y2),
則x1+x2=4,y1+y2=2,
把A(x1,y1),B(x2,y2)分別代入拋物線C:y2=24x,得
y12=24x1
y22=24x2
,∴(y1+y2)(y1-y2)=24(x1+x 2 )(x1-x2),
∴2(y1-y2)=96(x 1 -x2),
∴k=
y1-y2
x1-x2
=48,
∴拋物線C的以點(diǎn)M(2,1)為中點(diǎn)的弦AB所在直線方程為y-1=48(x-2),
整理,得48x-y-95=0.
故答案為:48x-y-95=0.
點(diǎn)評(píng):本題考查直線方程的求法,具體涉及到拋物線的簡(jiǎn)單性質(zhì),解題時(shí)要認(rèn)真審題,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,A是拋物線上橫坐標(biāo)為4且位于x軸上方的點(diǎn). A到拋物線準(zhǔn)線的距離等于5,過A作AB垂直于y軸,垂足為B,OB的中點(diǎn)為M(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求拋物線C的方程;
(Ⅱ)過M作MN⊥FA,垂足為N,求點(diǎn)N的坐標(biāo);
(Ⅲ)以M為圓心,4為半徑作圓M,點(diǎn)P(m,0)是x軸上的一個(gè)動(dòng)點(diǎn),試討論直線AP與圓M的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px(p>0),F(xiàn)為拋物線C的焦點(diǎn),A為拋物線C上的動(dòng)點(diǎn),過A作拋物線準(zhǔn)線l的垂線,垂足為Q.
(1)若點(diǎn)P(0,4)與點(diǎn)F的連線恰好過點(diǎn)A,且∠PQF=90°,求拋物線方程;
(2)設(shè)點(diǎn)M(m,0)在x軸上,若要使∠MAF總為銳角,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2Px(p>0)上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線y=kx+b(k≠0)與拋物線C交于兩點(diǎn)A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求證:a2=
16(1-kb)k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=4x,點(diǎn)M(m,0)在x軸的正半軸上,過M的直線l與C相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(I)若m=1,且直線l的斜率為1,求以AB為直徑的圓的方程;
(II)問是否存在定點(diǎn)M,不論直線l繞點(diǎn)M如何轉(zhuǎn)動(dòng),使得
1
|AM|2
+
1
|BM|2
恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=8x與點(diǎn)M(-2,2),過C的焦點(diǎn),且斜率為k的直線與C交于A,B兩點(diǎn),若
MA
MB
=0,則k=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案