已知常數(shù)a>0,n為正整數(shù),fn(x)=xn-(x+a)n(x>0)是關(guān)于x的函數(shù).
(1)判定函數(shù)fn(x)的單調(diào)性,并證明你的結(jié)論;
(2)對任意n≥a,證明f′n+1(n+1)<(n+1)fn′(n)
【答案】
分析:(1)根據(jù)已知中函數(shù)的解析式,我們易求出函數(shù)的導(dǎo)函數(shù)的解析式,分析導(dǎo)函數(shù)的值,即可證明函數(shù)f
n(x)的單調(diào)性;
(2)根據(jù)(1)的結(jié)論,我們易得當(dāng)x>a>0時(shí),f
n(x)=x
n-(x+a)
n是關(guān)于x的減函數(shù),且n≥a時(shí),有:(n+1)
n-(n+1+a)
n<n
n-(n+a)
n,求出f′
n+1(n+1)后,用不等式的性質(zhì)即可得到結(jié)論.
解答:解:(1)f
n(x)在(0,+∞)單調(diào)遞減,理由如下:
f
n′(x)=nx
n-1-n(x+a)
n-1=n[x
n-1-(x+a)
n-1],
∵a>0,x>0,
∴f
n′(x)<0,
∴f
n(x)在(0,+∞)單調(diào)遞減.(4分)
證明:(2)由上知:當(dāng)x>a>0時(shí),f
n(x)=x
n-(x+a)
n是關(guān)于x的減函數(shù),
∴當(dāng)n≥a時(shí),有:(n+1)
n-(n+1+a)
n<n
n-(n+a)
n(2分)
(n+1)f′
n(n)=(n+1)n[n
n-1-(n+a)
n-1]=(n+1)[(n
n-n(n+a)
n-1],(2分)
∵(n+2)>n,
∴f′
n+1(n+1)<(n+1)f′
n(n)(2分)
點(diǎn)評:本題考查的知識(shí)點(diǎn)是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,其中根據(jù)函數(shù)的解析式,求出導(dǎo)函數(shù)的解析式,是解答問題的關(guān)鍵.