【題目】已知雙曲線與橢圓有相同焦點(diǎn),且經(jīng)過(guò)點(diǎn)(4,6).
(1)求雙曲線方程;
(2)若雙曲線的左,右焦點(diǎn)分別是F1,F2,試問(wèn)在雙曲線上是否存在點(diǎn)P,使得|PF1|=5|PF2|.請(qǐng)說(shuō)明理由.
【答案】(1);(2)不存在
【解析】
(1)由題得,解方程組即得雙曲線方程;(2)假設(shè)在雙曲線上存在點(diǎn)P,使得|PF1|=5|PF2|,則點(diǎn)P只能在右支上.先求出|PF1|=5,|PF2|=1,分析得到此種情況不存在.
(1)橢圓的焦點(diǎn)在x軸上,且,即焦點(diǎn)為(±4,0),
于是可設(shè)雙曲線方程為,
則有解得a2=4,b2=12,
故雙曲線方程為.
(2)假設(shè)在雙曲線上存在點(diǎn)P,使得|PF1|=5|PF2|,則點(diǎn)P只能在右支上.由于在雙曲線中,由雙曲線定義知,|PF1|-5|PF2|=2a=4,于是得|PF1|=5,|PF2|=1.
但當(dāng)點(diǎn)P在雙曲線右支上時(shí),點(diǎn)P到左焦點(diǎn)F1的距離的最小值應(yīng)為a+c=6,
故不可能有|PF1|=5,即在雙曲線上不存在點(diǎn)P,使得|PF1|=5|PF2|
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過(guò)許多很有創(chuàng)意的求法,如著名的蒲豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過(guò)設(shè)計(jì)下面的實(shí)驗(yàn)來(lái)估計(jì)的值:先請(qǐng)名同學(xué),每人隨機(jī)寫(xiě)下一個(gè)都小于1的正實(shí)數(shù)對(duì);再統(tǒng)計(jì)兩數(shù)能與1構(gòu)成鈍角三角形三邊的數(shù)對(duì)的個(gè)數(shù);最后再根據(jù)統(tǒng)計(jì)數(shù)來(lái)估計(jì)的值.假如統(tǒng)計(jì)結(jié)果是,那么可以估計(jì)( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率,左、右焦點(diǎn)分別為,點(diǎn),點(diǎn)在線段的中垂線上.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于兩點(diǎn),直線與的傾斜角分別為,且,求證:直線過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
若是函數(shù)的極值點(diǎn),求實(shí)數(shù)a的值;
若對(duì)任意的為自然對(duì)數(shù)的底數(shù),都有成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰三角形PAD所在平面與菱形ABCD所在平面互相垂直,已知點(diǎn)E,F(xiàn),M,N分別為邊BA,BC,AD,AP的中點(diǎn).
(1)求證:AC⊥PE;
(2)求證:PF∥平面BNM.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一輛汽車(chē)從A市出發(fā)沿海岸一條筆直公路以的速度向東勻速行駛,汽車(chē)開(kāi)動(dòng)時(shí),在A市南偏東方向距A市500km且與海岸距離為300km的海上B處有一艘快艇與汽車(chē)同時(shí)出發(fā),要把一份文件交給這輛汽車(chē)的司機(jī).
(1)快艇至少以多大的速度行駛才能把文件送到司機(jī)手中?
(2)求快艇以最小速度行駛時(shí)的行駛方向與所成角的大。
(3)若快艇每小時(shí)最快行駛,快艇應(yīng)如何行駛才能盡快把文件交到司機(jī)手中?最快需多長(zhǎng)時(shí)間?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的方程只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;
(2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)探究函數(shù)在區(qū)間上的最大值(直接寫(xiě)出結(jié)果,不需給出演算步驟).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)南宋時(shí)期著名的數(shù)學(xué)家秦九韶在其著作《數(shù)書(shū)九章》中,提出了已知三角形三邊長(zhǎng)求三角形的面積的公式,與著名的海倫公式完全等價(jià),由此可以看出我國(guó)古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隔,開(kāi)平方得積.”若把以上這段文字寫(xiě)成公式,即,其中a、b、c分別為內(nèi)角A、B、C的對(duì)邊.若,,則面積S的最大值為
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com