先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b.

  則直線ax+by+5=0與圓x2+y2=1相切的概率為      

  將a,b,5的值分別作為三條線段的長,則這三條線段能圍成等腰三角形的概率為       。

   ,


解析:

(1)先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b,事件總數(shù)為6×6=36.

∵直線ax+by+c=0與圓x2+y2=1相切的充要條件是

即:a2+b2=25,由于a,b∈{1,2,3,4,5,6}

∴滿足條件的情況只有a=3,b=4,c=5;或a=4,b=3,c=5兩種情況.   

∴直線ax+by+c=0與圓x2+y2=1相切的概率是         

(2)先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b,事件總數(shù)為6×6=36.

∵三角形的一邊長為5

∴當a=1時,b=5,(1,5,5)                1種          

當a=2時,b=5,(2,5,5)                  1種          

當a=3時,b=3,5,(3,3,5),(3,5,5)    2種           

當a=4時,b=4,5,(4,4,5),(4,5,5)    2種          

當a=5時,b=1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5),

(5,4,5),(5,5,5),(5,6,5)    6種           

當a=6時,b=5,6,(6,5,5),(6,6,5)     2種          

故滿足條件的不同情況共有14種

答:三條線段能圍成不同的等腰三角形的概率為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b.
(1)求直線ax+by+5=0與圓x2+y2=1相切的概率;
(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b.
(Ⅰ)設(shè)函數(shù)f(x)=|x-a|,函數(shù)g(x)=x-b,令F(x)=f(x)-g(x),求函數(shù)F(x)有且只有一個零點的概率;
(Ⅱ)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b.將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆福建省漳州市高二上學期期末考試理科數(shù)學卷(解析版) 題型:解答題

先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a, b.

(1)求直線ax+by+5=0與圓 相切的概率;

(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010屆高三數(shù)學每周精析精練:概率 題型:解答題

 先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b.

  (1)求直線ax+by+5=0與圓x2+y2=1相切的概率;

  (2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.

 

 

 

 

 

查看答案和解析>>

同步練習冊答案