【題目】在四棱錐PABCD中,底面四邊形ABCD是一個(gè)菱形,且∠ABC,AB2,PA⊥平面ABCD

1)若Q是線段PC上的任意一點(diǎn),證明:平面PAC⊥平面QBD

2)當(dāng)平面PBC與平面PDC所成的銳二面角的余弦值為時(shí),求PA的長(zhǎng).

【答案】1)見(jiàn)解析(2

【解析】

1)先證明BD⊥平面PAC,再由面面垂直的判定定理即可得證;

2)建立空間直角坐標(biāo)系,設(shè)P(0,1,a)a>0),求出平面PBC與平面PDC的法向量,利用向量夾角公式建立關(guān)于a的方程,解出即可.

1)證明:∵四邊形ABCD是一個(gè)菱形,∴ACBD,

PA⊥平面ABCD,∴PABD,

ACPA=A,則BD平面PAC,

BD在平面QBD內(nèi),

∴平面PAC⊥平面QBD

2)設(shè)AC,BD交于點(diǎn)O,分別以OB,OC所在直線為x軸,y軸,以平行于AP的直線為z軸建立如圖所示的空間直角坐標(biāo)系,

,設(shè)P(0,1,a)(a>0),

,

設(shè)平面PBC的一個(gè)法向量為

,則

同理可求平面PDC的一個(gè)法向量為,

,解得a2=2,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin2xsin2x.

1)討論f(x)在區(qū)間(0,π)的單調(diào)性;

2)證明:;

3)設(shè)nN*,證明:sin2xsin22xsin24x…sin22nx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)安排4名畢業(yè)生到某企業(yè)的三個(gè)部門(mén)實(shí)習(xí),要求每個(gè)部門(mén)至少安排1人,其中甲大學(xué)生不能安排到部門(mén)工作,安排方法有______用數(shù)字作答

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著智能手機(jī)的普及,手機(jī)計(jì)步軟件迅速流行開(kāi)來(lái),這類(lèi)軟件能自動(dòng)記載每個(gè)人每日健步的步數(shù),從而為科學(xué)健身提供一定的幫助.某市工會(huì)為了解該市市民每日健步走的情況,從本市市民中隨機(jī)抽取了2000名市民(其中不超過(guò)40歲的市民恰好有1000名),利用手機(jī)計(jì)步軟件統(tǒng)計(jì)了他們某天健步的步數(shù),并將樣本數(shù)據(jù)分為,,,,,,九組(單位;千步),將抽取的不超過(guò)40歲的市民的樣本數(shù)據(jù)繪制成頻率分布直方圖如圖,將40歲以上的市民的樣本數(shù)據(jù)繪制成頻數(shù)分布表如下,并利用該樣本的頻率分布估計(jì)總體的概率分布.

分組(單位

千步)

頻數(shù)

10

20

20

30

400

200

200

100

20

1)現(xiàn)規(guī)定,日健步步數(shù)不低于13000步的為健步達(dá)人,填寫(xiě)下面列聯(lián)表,并根據(jù)列聯(lián)表判斷能否有99.9%的把握認(rèn)為是否為健步達(dá)人與年齡有關(guān);

健步達(dá)人

非健步達(dá)人

總計(jì)

40歲以上的市民

不超過(guò)40歲的市民

總計(jì)

2)利用樣本平均數(shù)和中位數(shù)估計(jì)該市不超過(guò)40歲的市民日健步步數(shù)(單位:千步)的平均數(shù)和中位數(shù);

3)若日健步步數(shù)落在區(qū)間內(nèi),則可認(rèn)為該市民運(yùn)動(dòng)適量,其中,分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計(jì)算可求得頻率分布直方圖中數(shù)據(jù)的標(biāo)準(zhǔn)差約為3.64.若一市民某天的健步步數(shù)為2萬(wàn)步,試判斷該市民這天是否運(yùn)動(dòng)適量?

參考公式:,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.001

2.072

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fxsincosω0),如果存在實(shí)數(shù)x0,使得對(duì)任意的實(shí)數(shù)x,都有fx02020fxfx0)成立,則ω的最大值為(

A.2020B.4040C.1010D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】千百年來(lái),我國(guó)勞動(dòng)人民在生產(chǎn)實(shí)踐中根據(jù)云的形狀、走向、速度、厚度、顏色等的變化,總結(jié)了豐富的“看云識(shí)天氣”的經(jīng)驗(yàn),并將這些經(jīng)驗(yàn)編成諺語(yǔ),如“天上鉤鉤云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同學(xué)為了驗(yàn)證“日落云里走,雨在半夜后”,觀察了所在地區(qū)天日落和夜晚天氣,得到如下列聯(lián)表:

夜晚天氣日落云里走

下雨

未下雨

出現(xiàn)

未出現(xiàn)

參考公式:.

臨界值表:

1)根據(jù)上面的列聯(lián)表判斷能否有的把握認(rèn)為“當(dāng)晚下雨”與“‘日落云里走’出現(xiàn)”有關(guān)?

2)小波同學(xué)為進(jìn)一步認(rèn)識(shí)其規(guī)律,對(duì)相關(guān)數(shù)據(jù)進(jìn)行分析,現(xiàn)從上述調(diào)查的“夜晚未下雨”天氣中按分層抽樣法抽取天,再?gòu)倪@天中隨機(jī)抽出天進(jìn)行數(shù)據(jù)分析,求抽到的這天中僅有天出現(xiàn)“日落云里走”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求處的切線方程;

2)當(dāng)時(shí),討論的單調(diào)性;

3)若有兩個(gè)極值點(diǎn)、,且不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為等差數(shù)列,各項(xiàng)為正的等比數(shù)列的前項(xiàng)和為,,__________.在①;②;③這三個(gè)條件中任選其中一個(gè),補(bǔ)充在橫線上,并完成下面問(wèn)題的解答(如果選擇多個(gè)條件解答,則以選擇第一個(gè)解答記分).

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的內(nèi)角、、的對(duì)邊分別為、,且

(Ⅰ)求;

(Ⅱ)若,如圖,為線段上一點(diǎn),且,求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案