【題目】在△ABC中,角A,B,C所對的邊長分別為a,b,c,且cos = .
(1)若a=3,b= ,求c的值;
(2)若f(A)=sin ( cos ﹣sin )+ ,求f(A)的取值范圍.
【答案】
(1)解:在△ABC中,A+C=π﹣B,
∴cos =cos =sin = ,
∴ = ,即B= ,
由余弦定理:b2=a2+c2﹣2accosB,得c2﹣3c+2=0,
解得:c=1或c=2
(2)解:f(A)= sinA﹣ + = sinA+ cosA=sin(A+ ),
由(1)A+C=π﹣B= ,得到A∈(0, ),
∴A+ ∈( , ),
∴sin(A+ )∈( ,1],
則f(A)的范圍是( ,1]
【解析】(1)由三角形內(nèi)角和定理表示出 ,利用誘導(dǎo)公式化簡求出B的度數(shù),再利用余弦定理求出c的值即可;(2)f(A)解析式利用二倍角的正弦、余弦函數(shù)公式化簡,再利用兩角和與差的正弦函數(shù)公式化為一個(gè)角的三角函數(shù),由A的范圍求出f(A)的范圍即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)化肥廠生產(chǎn)甲種混合肥料1車皮、乙種混合肥料1車皮所需要的主要原料如表:
原料 | 磷酸鹽(單位:噸) | 硝酸鹽(單位:噸) |
甲 | 4 | 20 |
乙 | 2 | 20 |
現(xiàn)庫存磷酸鹽8噸、硝酸鹽60噸,計(jì)劃在此基礎(chǔ)上生產(chǎn)若干車皮的甲、乙兩種混合肥料.
(1)設(shè)x,y分別表示計(jì)劃生產(chǎn)甲、乙兩種肥料的車皮數(shù),試列出x,y滿足的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)若生產(chǎn)1車皮甲種肥料,利潤為3萬元;生產(chǎn)1車皮乙種肥料,利潤為2萬元.那么分別生產(chǎn)甲、乙兩種肥料多少車皮,能夠產(chǎn)生最大利潤?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4x+a2x+3,a∈R
(1)當(dāng)a=﹣4時(shí),且x∈[0,2],求函數(shù)f(x)的值域;
(2)若f(x)>0在(0,+∞)對任意的實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程ln|x|﹣ax2+ =0有4個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin2wx﹣sin2(wx﹣ )(x∈R,w為常數(shù)且 <w<1),函數(shù)f(x)的圖象關(guān)于直線x=π對稱. (I)求函數(shù)f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C的對邊分別為a,b,c,若a=1,f( A)= .求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】O為△ABC內(nèi)一點(diǎn),且2 , =t ,若B,O,D三點(diǎn)共線,則t的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=4,an+1=qan+d(q,d為常數(shù)).
(1)當(dāng)q=1,d=2時(shí),求a2017的值;
(2)當(dāng)q=3,d=﹣2時(shí),記 ,Sn=b1+b2+b3+…+bn , 證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某校高三年級隨機(jī)抽取一個(gè)班,對該班50名學(xué)生的高校招生體檢表中的視力情況進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示.若某高校A專業(yè)對視力的要求在0.9以上,則該班學(xué)生中能報(bào)A專業(yè)的人數(shù)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com