已知S={y|y=2x},T={x|y=lg(x-1)},則S∩T=


  1. A.
    (0,+∞)
  2. B.
    [0,+∞)
  3. C.
    (1,+∞)
  4. D.
    [1,+∞)
C
分析:先根據(jù)函數(shù)的值域和定義域化簡(jiǎn)集合S,T,再計(jì)算S∩T即可.
解答:由已知易得S={y∈R|y≥0},
T={x∈R|x>1},
∴S∩T=(1,+∞).
故選C.
點(diǎn)評(píng):本題主要考查了集合的交運(yùn)算,化簡(jiǎn)計(jì)算即可,比較簡(jiǎn)單.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)F是橢圓
x2
1+a2
+y2=1(a>0)
右焦點(diǎn),點(diǎn)M(m,0)、N(0,n)分別是x軸、y軸上的動(dòng)點(diǎn),且滿足
MN
NF
=0
,若點(diǎn)P滿足
OM
=2
ON
+
PO

(1)求P點(diǎn)的軌跡C的方程;
(2)設(shè)過點(diǎn)F任作一直線與點(diǎn)P的軌跡C交于A、B兩點(diǎn),直線OA、OB與直線x=-a分別交于點(diǎn)S、T(其中O為坐標(biāo)原點(diǎn)),試判斷
FS
FT
是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)S過點(diǎn)T(0,2)且被x軸截得的弦CD長(zhǎng)為4.
(1)求動(dòng)圓圓心S的軌跡E的方程;
(2)設(shè)P是直線l:y=x-2上任意一點(diǎn),過P作軌跡E的切線PA,PB,A,B是切點(diǎn),求證:直線AB恒過定點(diǎn)M;
(3)在(2)的條件下,過定點(diǎn)M作直線:y=x-2的垂線,垂足為N,求證:MN是∠ANB的平分線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=-x2+2過其上一點(diǎn)P引拋物線的切線l,l與坐標(biāo)軸在第一象限圍成△AOB,求△AOB面積S的最小值,并求此時(shí)切線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且m∥n,把其中x,y所滿足的關(guān)系式記為y=f(x).若f′(x)為f(x)的導(dǎo)函數(shù),F(xiàn)(x)=f(x)+af'(x)(a>0),且F(x)是R上的奇函數(shù).
(Ⅰ)求數(shù)學(xué)公式的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間(用字母a表示);
(Ⅲ)當(dāng)a=2時(shí),設(shè)0<t<4且t≠2,曲線y=f(x)在點(diǎn)A(t,f(t))處的切線與曲線y=f(x)相交于點(diǎn)B(m,f(m))(A與B不重合),直線x=t與y=f(m)相交于點(diǎn)C,△ABC的面積為S,試用t表示△ABC的面積S(t);并求S(t)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011學(xué)年浙江省杭州二中高考數(shù)學(xué)第一次仿真試卷(文科)(解析版) 題型:解答題

已知?jiǎng)狱c(diǎn)S過點(diǎn)T(0,2)且被x軸截得的弦CD長(zhǎng)為4.
(1)求動(dòng)圓圓心S的軌跡E的方程;
(2)設(shè)P是直線l:y=x-2上任意一點(diǎn),過P作軌跡E的切線PA,PB,A,B是切點(diǎn),求證:直線AB恒過定點(diǎn)M;
(3)在(2)的條件下,過定點(diǎn)M作直線:y=x-2的垂線,垂足為N,求證:MN是∠ANB的平分線.

查看答案和解析>>

同步練習(xí)冊(cè)答案