(本小題滿分13分)已知拋物線上一動(dòng)點(diǎn),拋物線內(nèi)一點(diǎn),為焦點(diǎn)且的最小值為。
求拋物線方程以及使得|PA|+|PF|最小時(shí)的P點(diǎn)坐標(biāo);
過(guò)(1)中的P點(diǎn)作兩條互相垂直的直線與拋物線分別交于C、D兩點(diǎn),直線CD是否過(guò)一定點(diǎn)? 若是,求出該定點(diǎn)坐標(biāo); 若不是,請(qǐng)說(shuō)明理由。
(2,2). 過(guò)定點(diǎn)。
解析試題分析:(1)過(guò)A,P分別做準(zhǔn)線的垂線,設(shè)垂足為,則|PF|=|PH|,由圖象可知,當(dāng)|PA|+|PF|取最小值即是點(diǎn)到準(zhǔn)線的距離,此時(shí)P點(diǎn)為AA0與拋物線的交點(diǎn).故,此時(shí)拋物線方程為, P點(diǎn)坐標(biāo)為(2,2).
(2)設(shè),,直線即
即, 由PA⊥PB有
得代入到中,有,
即即,故直線AB過(guò)定點(diǎn)。
考點(diǎn):拋物線的定義;拋物線的簡(jiǎn)單性質(zhì);直線與拋物線的綜合應(yīng)用。
點(diǎn)評(píng):拋物線的定義在考試中經(jīng)?嫉剑覀円炀氄莆。此題的第一問(wèn)解答的關(guān)鍵是:利用拋物線的定義把“的最小值”抓化為“點(diǎn)A到準(zhǔn)線的距離!
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知、分別是橢圓的左、右焦點(diǎn)。
(1)若是第一象限內(nèi)該橢圓上的一點(diǎn),,求點(diǎn)P的坐標(biāo);
(2)設(shè)過(guò)定點(diǎn)M(0,2)的直線與橢圓交于不同的兩點(diǎn)A、B,且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分16分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分6分.
(理)已知橢圓的一個(gè)焦點(diǎn)為,點(diǎn)在橢圓上,點(diǎn)滿足(其中為坐標(biāo)原點(diǎn)),過(guò)點(diǎn)作一直線交橢圓于、兩點(diǎn) .
(1)求橢圓的方程;
(2)求面積的最大值;
(3)設(shè)點(diǎn)為點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),判斷與的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的離心率為,且過(guò)點(diǎn)(),
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:△OPQ面積的最大值及此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)如圖,直線l:y=x+b與拋物線C:x2=4y相切于點(diǎn)A.
(1)求實(shí)數(shù)b的值;
(2)求以點(diǎn)A為圓心,且與拋物線C的準(zhǔn)線相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(滿分12分)已知點(diǎn),直線: 交軸于點(diǎn),點(diǎn)是上的動(dòng)點(diǎn),過(guò)點(diǎn)垂直于的直線與線段的垂直平分線交于點(diǎn).
(Ⅰ)求點(diǎn)的軌跡的方程;(Ⅱ)若 A、B為軌跡上的兩個(gè)動(dòng)點(diǎn),且 證明直線AB必過(guò)一定點(diǎn),并求出該定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)
已知橢圓的中心在坐標(biāo)原點(diǎn),長(zhǎng)軸長(zhǎng)為,離心率,過(guò)右焦點(diǎn)的直線交
橢圓于,兩點(diǎn):
(Ⅰ)求橢圓的方程;(Ⅱ)當(dāng)直線的斜率為1時(shí),求的面積;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知平面內(nèi)一動(dòng)點(diǎn)P到F(1,0)的距離比點(diǎn)P到軸的距離少1.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)F的直線交軌跡C于A,B兩點(diǎn),交直線于點(diǎn),且
,,
求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知橢圓C的中心在原點(diǎn),焦點(diǎn)在軸上,左右焦點(diǎn)分別為,且,
點(diǎn)(1,)在橢圓C上.
(1)求橢圓C的方程;
(2)過(guò)的直線與橢圓相交于兩點(diǎn),且的面積為,求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com