已知一袋有2個白球和4個黑球。
(1)采用不放回地從袋中摸球(每次摸一球),4次摸球,求恰好摸到2個黑球的概率;
(2)采用有放回從袋中摸球(每次摸一球),4次摸球,令X表示摸到黑球次數(shù),
求X的分布列和期望.
(1)、
(2)
本試題主要是考查了古典概型概率和隨機變量的分布列以及數(shù)學期望值的求解,二項分布的運用。
(1)因為一袋有2個白球和4個黑球。采用不放回地從袋中摸球(每次摸一球),4次摸球,求恰好摸到2個黑球直接利用古典概型概率公式計算得到。
(2)由于是由放回的摸球,因此是獨立重復(fù)試驗,運用其公式可以解得。
解:(1)、
(2)、X可取0,1,2,3,4
一次摸球為黑球的概率
,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

有一種游戲規(guī)則如下:口袋里共裝有4個紅球和4個黃球,一次摸出4個,若顏色都相同,則
得100分;若有3個球顏色相同,另一個不同,則得50分,其他情況不得分. 小張摸一次得分的期望是_____ .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

QQ先生的魚缸中有7條魚,其中6條青魚和1條黑魚,計劃從當天開始,每天中午從該魚缸中抓出1條魚(每條魚被抓到的概率相同)并吃掉.若黑魚未被抓出,則它每晚要吃掉1條青魚(規(guī)定青魚不吃魚).
(Ⅰ)求這7條魚中至少有6條被QQ先生吃掉的概率;
(Ⅱ)以表示這7條魚中被QQ先生吃掉的魚的條數(shù),求的分布列及其數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)在第9屆校園文化藝術(shù)節(jié)棋類比賽項目報名過程中,我校高二(2)班共有16名男生和14名女生預(yù)報名參加,調(diào)查發(fā)現(xiàn),男、女選手中分別有10人和6人會圍棋.
(I)根據(jù)以上數(shù)據(jù)完成以下22列聯(lián)表:
 
會圍棋
不會圍棋
總計

 
 
 

 
 
 
總計
 
 
30
并回答能否在犯錯的概率不超過0.10的前提下認為性別與會圍棋有關(guān)?
參考公式:其中n=a+b+c+d
參考數(shù)據(jù):

0.40
0.25
0.10
0.010

0.708
1.323
2.706
6.635
(Ⅱ)若從會圍棋的選手中隨機抽取3人成立該班圍棋代表隊,則該代表隊中既有男又
有女的概率是多少?
(Ⅲ)若從14名女棋手中隨機抽取2人參加棋類比賽,記會圍棋的人數(shù)為,求的期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

袋中裝著標有數(shù)字1,2,3,4,5的小球各2個,現(xiàn)從袋中任意取出3個小球,假設(shè)每個小球被取出的可能性都相等.
(Ⅰ)求取出的3個小球上的數(shù)字分別為1,2,3的概率;
(Ⅱ)求取出的3個小球上的數(shù)字恰有2個相同的概率;
(Ⅲ)用X表示取出的3個小球上的最大數(shù)字,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

.某漁船要對下月是否出海做出決策,如出海后遇到好天氣,可得收益6000元,如出海后天氣變壞將損失8000元,若不出海,無論天氣如何都將承擔1000元損失費,據(jù)氣象部門的預(yù)測下月好天的概率為0.6,天氣變壞的概率為0.4,則該漁船應(yīng)選擇_____________(填“出!被颉安怀龊!保

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)某學校隨機抽取部分新生調(diào)查其上學所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學所需時間的范圍是,樣本數(shù)據(jù)分組為,,,.
(Ⅰ)求直方圖中的值;
(Ⅱ)如果上學所需時間不少于1小時的學生可申請在學校住宿,
請估計學校600名新生中有多少名學生可以申請住宿;
(Ⅲ)從學校的新生中任選4名學生,這4名學生中上學所需時間
少于20分鐘的人數(shù)記為,求的分布列和數(shù)學期望.(以直方圖中新生上學所需時間少于20分鐘的頻率作為每名學生上學所需時間少于20分鐘的概率)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
某地區(qū)對12歲兒童瞬時記憶能力進行調(diào)查.瞬時記憶能力包括聽覺記憶能力與視覺記憶能力.某班學生共有40人,下表為該班學生瞬時記憶能力的調(diào)查結(jié)果.例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學生為3人.
    視覺        
視覺記憶能力
偏低
中等
偏高
超常
聽覺
記憶
能力
偏低
0
7
5
1
中等
1
8
3

偏高
2

0
1
超常
0
2
1
1
由于部分數(shù)據(jù)丟失,只知道從這40位學生中隨機抽取一個,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為
(I)試確定的值;
(II)從40人中任意抽取3人,求其中至少有一位具有聽覺記憶能力或視覺記憶能力超常的學生的概率;
(III)從40人中任意抽取3人,設(shè)具有聽覺記憶能力或視覺記憶能力偏高或超常的學生人數(shù)為,求隨機變量的數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)張先生家住H小區(qū),他在C科技園區(qū)工作,從家開車到公司上班有L1L2兩條路線(如圖),L1路線上有A1,A2,A3三個路口,各路口遇到紅燈的概率均為;L2路線上有B1,B2兩個路口,各路口遇到紅燈的概率依次為,

(1)若走L1路線,求最多遇到1次紅燈的概率;
(2)若走L2路線,求遇到紅燈次數(shù)的數(shù)學期望;
(3)按照“平均遇到紅燈次數(shù)最少”的要求,請你幫助張先生從上述兩條路線中選擇一條最好的上班路線,并說明理由.

查看答案和解析>>

同步練習冊答案