【題目】中,角的對(duì)邊分別為,若 ().

(1)判斷的形狀;

(2)若,求的值.

【答案】 (1)△ABC為等腰三角形.(2)k=1.

【解析】試題分析:

(1)由平面向量的數(shù)量積結(jié)合題意可得AB,即△ABC為等腰三角形;

(2)利用題意結(jié)合余弦定理得到關(guān)于實(shí)數(shù)k的方程,解方程可得: .

試題解析:

解 (1)∵·cbcos A,·cacos B,

··,∴bccos Aaccos B,

∴sin Bcos A=sin Acos B

即sin Acos B-sin Bcos A=0,∴sin(AB)=0,

∵-π<AB<π,∴AB,即△ABC為等腰三角形.

(2)由(1)知,·bccos Abc·k,

c,∴k=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩條公路AP與AQ夾角A為鈍角,其正弦值是 .甲乙兩人從A點(diǎn)出發(fā)沿著兩條公路進(jìn)行搜救工作,甲沿著公路AP方向,乙沿著公路AQ方向.

(1)當(dāng)甲前進(jìn)5km的時(shí)候到達(dá)P處,同時(shí)乙到達(dá)Q處,通訊測(cè)得甲乙兩人相距 km,求乙在此時(shí)前進(jìn)的距離AQ;

(2)甲在5公里處原地未動(dòng),乙回頭往A方向行走至M點(diǎn)收到甲發(fā)出的信號(hào),此時(shí)M點(diǎn)看P、Q兩點(diǎn)的張角為(張角為QMP),求甲乙兩人相距的距離MP的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究性學(xué)習(xí)小組對(duì)春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù),作了初步處理,得到下表:

日期

3月1日

3月2日

3月3日

3月4日

3月5日

溫差

10

11

13

12

9

發(fā)芽率(顆)

23

25

30

26

16

(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均小于26”的概率;

(2)請(qǐng)根據(jù)3月1日至3月5日的數(shù)據(jù),求出關(guān)于的線性回歸方程,并預(yù)報(bào)3月份晝夜溫差為14度時(shí)實(shí)驗(yàn)室每天100顆種子浸泡后的發(fā)芽(取整數(shù)值).

附:回歸方程中的斜率和截距最小二乘法估計(jì)公式分別為:,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,,又平面,且,點(diǎn)在棱上,且

(1)求異面直線所成的角的大小;

(2)求證:平面;

(3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某投資公司擬投資開發(fā)某項(xiàng)新產(chǎn)品,市場(chǎng)評(píng)估能獲得10~1 000萬(wàn)元的投資收益.現(xiàn)公司準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬(wàn)元)隨投資收益x(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不低于1萬(wàn)元,同時(shí)不超過投資收益的20%.

(1) 設(shè)獎(jiǎng)勵(lì)方案的函數(shù)模型為f(x),試用數(shù)學(xué)語(yǔ)言表述公司對(duì)獎(jiǎng)勵(lì)方案的函數(shù)模型f(x)的基本要求;

(2) 公司能不能用函數(shù)f(x)=+2作為預(yù)設(shè)的獎(jiǎng)勵(lì)方案的模型函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠有容量300噸的水塔一個(gè),每天從早六點(diǎn)到晚十點(diǎn)供應(yīng)生活和生產(chǎn)用水,已知:該廠生活用水每小時(shí)10噸,工業(yè)用水總量與時(shí)間單位:小時(shí),規(guī)定早晨六點(diǎn)時(shí)的函數(shù)關(guān)系為,水塔的進(jìn)水量有10級(jí),第一級(jí)每小時(shí)進(jìn)水10噸,以后每提高一級(jí), 進(jìn)水量增加10噸.若某天水塔原有水100噸,在供應(yīng)同時(shí)打開進(jìn)水管.問該天進(jìn)水量應(yīng)選擇幾級(jí),既能保證該廠用水即水塔中水不空,又不會(huì)使水溢出?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)幾何體的三視圖如下圖所示,其中主視圖與左視圖是腰長(zhǎng)為6的等腰直角三角形,俯視圖是正方形

請(qǐng)畫出該幾何體的直觀圖,并求出它的體積;

用多少個(gè)這樣的幾何體可以拼成一個(gè)棱長(zhǎng)為6的正方體ABCDA1B1C1D1? 如何組拼?試證明你的結(jié)論;

的情形下,設(shè)正方體ABCDA1B1C1D1的棱CC1的中點(diǎn)為E, 求平面AB1E與平面ABC所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若,關(guān)于的方程有三個(gè)不同的實(shí)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是( )

A. yx具有正的線性相關(guān)關(guān)系

B. 若給變量x一個(gè)值,由回歸直線方程=0.85x-85.71得到一個(gè),則為該統(tǒng)計(jì)量中的估計(jì)值

C. 若該大學(xué)某女生身高增加1 cm,則其體重約增加0.85 kg

D. 若該大學(xué)某女生身高為170 cm,則可斷定其體重必為58.79 kg

查看答案和解析>>

同步練習(xí)冊(cè)答案