已知函數(shù)f(x)=ax2+bx+c,(a,b,c∈R且a≠0)
(1)當(dāng)x=1時有最大值1,若x∈[m,n],(0<m<n)時,函數(shù)f(x)的值域為[
1
n
,
1
m
]
,證明:
f(m)
f(n)
=
n
m

(2)若b=4,c=-2時,對于給定正實數(shù)a有一個最小負(fù)數(shù)g(a),使得x∈[g(a),0]時,|f(x)|≤4恒成立,問a為何值時,g(a)最小,并求出這個最小值.
分析:(1)由x=1時有最大值1,及函數(shù)的值域,可知m≥1,從而[m,n]?[1,+∞)因此f(m)=
1
m
,f(n)=
1
n
,故可得證.
(2)f(x)=ax2+4x-2,顯然f(0)=-2,當(dāng)0<a<2時,g(a)∈(-
2
a
,0
),且f(g(a))=-4
令ax2+4x-2=-4,解得x=
-2±
4-2a
a
,取g(a)=
-2+
4-2a
a
=
-2
2+
4-2a
,從而有g(shù)(a)>-12.
同理當(dāng)a≥2時,g(a)≥-3,故可得結(jié)論.
解答:解:(1)由條件得:a<0,
1
m
≤1,即m≥1,
∴[m,n]?[1,+∞)∴f(m)=
1
m
,f(n)=
1
n
,
f(m)
f(n)
=
n
m

(2)f(x)=a(x+
2
a
,顯然f(0)=-2,
對稱軸x=-
2
a
<01,當(dāng)-2-
4
a
<-4
,即0<a<2時,g(a)∈(-
2
a
,0
),且f(g(a))=-4
令ax2+4x-2=-4,解得x=
-2±
4-2a
a
,取g(a)=
-2+
4-2a
a
=
-2
2+
4-2a

∵0<a<2∴g(a)>-12,當(dāng)-2-
4
a
≥-4,即a≥2,g(a)<-
2
a
,且f(g(a))=4令ax2+4x-2=4,
解得x=
-2±
4+6a
a
,取g(a)=
-2-
4+6a
a
=
-6
4+6a
-2

∵a≥2,∴g(a)≥-3,當(dāng)且僅當(dāng)a=2時取等號.
綜上,當(dāng)a=2時,g(a)最小值為-3
點評:本題的(1)問利用函數(shù)的值域及最大值,避免了討論,(2)應(yīng)注意合理的分類,要使g(a)最小,即那個使|f(x)|=4的x最小,越遠(yuǎn)離原點的負(fù)值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案