【題目】如圖,在平面直角坐標(biāo)系中,點A是x軸正半軸上的任一點,且,點B在射線ON上運動.
(1)若點,當(dāng)為直角三角形時,求的值;
(2)若點,求點A關(guān)于射線的對稱點P的坐標(biāo);
(3)若,C為線段AB的中點,若Q為點C關(guān)于射線ON的對稱點,求點的軌跡方程,并指出x、y的取值范圍.
【答案】(1)若,則;若,則(2)(-1, ).(3)其中
【解析】試題分析:
(1)結(jié)合題意分類討論有:若,則;若,則;
(2)由題意結(jié)合三角函數(shù)的定義可得點P為(-1, ).
(3)由題意可設(shè), ,結(jié)合兩點之間距離公式和中點坐標(biāo)公式有 整理變形可得: ,其中.
試題解析:
(1)中, , ,
若,則;
若,則.
(2)易知點A關(guān)于射線的對稱點P一定在角的終邊上,且.
按三角比的定義可知
從而所求的點P為(-1, ).
(3)點關(guān)于射線的對稱點,即
設(shè), ,則……(*)
易知點為線段PB的中點,所以
,
代入上式(*)化簡整理可得: .
其中
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,a1=,其前n項和為Sn,且Sn=an+1- (n∈N*).
(1)求an,Sn;
(2)設(shè)bn=log2(2Sn+1)-2,數(shù)列{cn}滿足cn·bn+3·bn+4=1+(n+1)(n+2)·2bn,數(shù)列{cn}的前n項和為Tn,求使4Tn>2n+1-成立的最小正整數(shù)n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖.圖中A點表示十月的平均最高氣溫約為15℃,B點表示四月的平均最低氣溫約為5℃.下面敘述不正確的是 ( )
A. 各月的平均最低氣溫都在0℃以上
B. 七月的平均溫差比一月的平均溫差大
C. 三月和十一月的平均最高氣溫基本相同
D. 平均最高氣溫高于20℃的月份有5個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知在極坐標(biāo)系和直角坐標(biāo)系中,極點與直角坐標(biāo)系的原點重合,極軸與軸的非負(fù)半軸重合,曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的直角坐標(biāo)方程和曲線的普通方程;
(2)判斷曲線與曲線的位置關(guān)系,若兩曲線相交,求出兩交點間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著醫(yī)院對看病掛號的改革,網(wǎng)上預(yù)約成為了當(dāng)前最熱門的就診方式,這解決了看病期間病人插隊以及醫(yī)生先治療熟悉病人等諸多問題;某醫(yī)院研究人員對其所在地區(qū)年齡在10~60歲間的位市民對網(wǎng)上預(yù)約掛號的了解情況作出調(diào)查,并將被調(diào)查的人員的年齡情況繪制成頻率分布直方圖,如下圖所示.
(Ⅰ)若被調(diào)查的人員年齡在20~30歲間的市民有300人,求被調(diào)查人員的年齡在40歲以上(含40歲)的市民人數(shù);
(Ⅱ)若按分層抽樣的方法從年齡在以內(nèi)及以內(nèi)的市民中隨機抽取5人,再從這5人中隨機抽取2人進(jìn)行調(diào)研,求抽取的2人中,至多1人年齡在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若為的極值點,求的值;
(Ⅱ)若在單調(diào)遞增,求的取值范圍.
(Ⅲ)當(dāng)時,方程有實數(shù)根,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的左頂點,且點在橢圓上, 分別是橢圓的左、右焦點。過點作斜率為的直線交橢圓于另一點,直線交橢圓于點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若為等腰三角形,求點的坐標(biāo);
(3)若,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com