【題目】已知數(shù)列{an}的前n項(xiàng)和是Sn , 且Sn+ an=1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log4(1﹣Sn+1)(n∈N*),Tn= + +…+ ,求使Tn 成立的最小的正整數(shù)n的值.

【答案】
(1)解:當(dāng)n=1時(shí),a1=S1,由S1+ a1=1a1= ,

當(dāng)n≥2時(shí),Sn+ an=1①,Sn1+ an1=1②,

①﹣②,得 =0,即an= an1,

∴{an}是以 為首項(xiàng), 為公比的等比數(shù)列.

故an= =3 (n∈N*);


(2)解:由(1)知1﹣Sn+1= = ,

bn=log4(1﹣Sn+1)= =﹣(n+1),

= ,

Tn= + +…+ =( )+( )+…+( )=

成立的最小的正整數(shù)n的值n=2014.


【解析】(1)n=1時(shí),易求a1= ,當(dāng)n≥2時(shí),Sn+ an=1①,Sn1+ an1=1②,①﹣②可得數(shù)列遞推式,由此可判斷{an}是等比數(shù)列,從而可求an . (2)由(1)可求得bn , 利用裂項(xiàng)相消法可求得Tn , 然后可解得不等式Tn 得到答案;
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識(shí),掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的不等式ax2﹣|x+1|+3a≥0的解集為(﹣∞,+∞),則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知n∈N* , 設(shè)Sn是單調(diào)遞減的等比數(shù)列{an}的前n項(xiàng)和,a1= 且S2+a2 , S4+a4 , S3+a3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{nan}的前n項(xiàng)和為T(mén)n , 求證:對(duì)于任意正整數(shù)n,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】雖然吸煙有害健康,但是由于歷史以及社會(huì)的原因,吸煙也是部分公民交際的重要媒介.世界衛(wèi)生組織1987年11月建議把每年的4月7日定為世界無(wú)煙日,且從1989年開(kāi)始,世界無(wú)煙日改為每年的5月31日.某報(bào)社記者專(zhuān)門(mén)對(duì)吸煙的市民做了戒煙方面的調(diào)查,經(jīng)抽樣只有的煙民表示愿意戒煙,將頻率視為概率.

(1)從該市吸煙的市民中隨機(jī)抽取3位,求至少有一位煙民愿意戒煙的概率;

(2)從該市吸煙的市民中隨機(jī)抽取4位, 表示愿意戒煙的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)既有一個(gè)極小值又有一個(gè)極大值,求的取值范圍;

3)若存在,使得當(dāng)時(shí), 的值域是,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

定義在上的函數(shù),若,有,則稱(chēng)函數(shù)為定義在上的非嚴(yán)格單增函數(shù);若,有,則稱(chēng)函數(shù)為定義在上的非嚴(yán)格單減函數(shù).已知: .

(1)若函數(shù)為定義在上的非嚴(yán)格單增函數(shù),求實(shí)數(shù)的取值范圍.

(2)若函數(shù)為定義在上的非嚴(yán)格單減函數(shù),試解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓x2+y2﹣2x+4y+3=0的圓心到直線x﹣y=1的距離為:( )
A.2
B.
C.1
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題p:函數(shù)f(x)= (a>0,且a≠1)在R上為單調(diào)遞減函數(shù),命題q:x∈[0, ],x2﹣a≤0恒成立.
(1)求命題q真時(shí)a的取值范圍;
(2)若命題p∧q為假,p∨q為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2sinx(sinx+ cosx)﹣1(其中x∈R),求:
(1)函數(shù)f(x)的最小正周期;
(2)函數(shù)f(x)的單調(diào)減區(qū)間;
(3)函數(shù)f(x)圖象的對(duì)稱(chēng)軸和對(duì)稱(chēng)中心.

查看答案和解析>>

同步練習(xí)冊(cè)答案