【題目】如圖,在直三棱柱中,,,是的中點(diǎn).
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
【答案】(1)見解析;(2)
【解析】
(1)證明線面平行,可以利用線面平行的判定定理,只要證明A1B∥OM可;
(2)(可判斷BA,BC,BB1兩兩垂直,建立空間直角坐標(biāo)系,用坐標(biāo)表示點(diǎn)與向量,求得平面AMC1的法向量、直線CC1的闡釋,向量,代入向量夾角公式,可求直線CC1與平面AMC1所成角的正弦值;
(1)證明:連接交于,連接.在三角形中,
是三角形的中位線,
所以∥,
又因平面,
所以∥平面.
(2)由ABC-A1B1C1是直三棱柱,且∠ABC=90°,
故BA,BC,BB1兩兩垂直,如圖以所在的直線為軸, 以所在的直線為軸, 以所在的直線為軸,以的長度為單位長度建立空間直角坐標(biāo)系.
則,,,,,,.設(shè)直線與平面所成角為,平面的法向量為.則有,,,
令,得,
設(shè)直線與平面所成角為,
則.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的圖形是由一個半徑為2的圓和兩個半徑為1的半圓組成,它們的圓心分別為O,O1 , O2 . 動點(diǎn)P從A點(diǎn)出發(fā)沿著圓弧按A→O→B→C→A→D→B的路線運(yùn)動(其中A,O1 , O,O2 , B五點(diǎn)共線),記點(diǎn)P運(yùn)動的路程為x,設(shè)y=|O1P|2 , y與x的函數(shù)關(guān)系為y=f(x),則y=f(x)的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有2名男生、3名女生,在下列不同條件下,求不同的排列方法總數(shù).
(1)全體站成一排,甲不站排頭也不站排尾;
(2)全體站成一排,女生必須站在一起;
(3)全體站成一排,男生互不相鄰.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別是a,b,c,且 acosC=(2b﹣ c)cosA.
(1)求角A的大。
(2)求cos( ﹣B)﹣2sin2 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣(a+2)x+alnx,其中常數(shù)a>0.
(1)當(dāng)a>2時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)定義在D上的函數(shù)y=h(x)在點(diǎn)P(x0 , h(x0))處的切線方程為l:y=g(x),若 >0在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對稱點(diǎn)”.當(dāng)a=4時,試問y=f(x)是否存在“類對稱點(diǎn)”,若存在,請至少求出一個“類對稱點(diǎn)”的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是菱形,且AB=AA1 , ∠A1AB=∠A1AD=60°.
(1)求證:平面A1BD⊥平面A1AC;
(2)若BD= D=2,求平面A1BD與平面B1BD所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市市民用水?dāng)M實(shí)行階梯水價,每人用水量不超過立方米的部分按元/立方米收費(fèi),超出立方米的部分按元/立方米收費(fèi),從該市隨機(jī)調(diào)查了位市民,獲得了他們某月的用水量數(shù)據(jù),整理得到如下頻率分布直方圖,并且前四組頻數(shù)成等差數(shù)列,
(Ⅰ)求的值及居民用水量介于的頻數(shù);
(Ⅱ)根據(jù)此次調(diào)查,為使以上居民月用水價格為元/立方米,應(yīng)定為多少立方米?(精確到小數(shù)點(diǎn)后位)
(Ⅲ)若將頻率視為概率,現(xiàn)從該市隨機(jī)調(diào)查名居民的用水量,將月用水量不超過立方米的人數(shù)記為,求其分布列及其均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的兩個焦點(diǎn)坐標(biāo)分別為F1(-,0)和F2(,0),且橢圓過點(diǎn)
(1)求橢圓方程;
(2)過點(diǎn)作不與y軸垂直的直線l交該橢圓于M,N兩點(diǎn),A為橢圓的左頂點(diǎn),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的不等式ax2+bx+2>0的解集為{x|-1<x<2},則關(guān)于x的不等式bx2-ax-2>0的解集為( )
A. {x|-2<x<1} B. {x|x>1或x<-2}
C. {x|x>2或x<-1} D. {x|x<-1或x>1}
【答案】B
【解析】
利用不等式的解集與方程根的關(guān)系,求出a,b的值,即可求得不等式bx2﹣ax﹣2>0的解集.
∵關(guān)于x的不等式ax2+bx+2>0的解集為(﹣1,2),
∴﹣1,2是ax2+bx+2=0(a<0)的兩根
∴
∴a=﹣1,b=1
∴不等式bx2﹣ax﹣2>0為x2+x﹣2>0,
∴x<﹣2或x>1
故選:B.
【點(diǎn)睛】
(1)二次函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo)、二次不等式解集的端點(diǎn)值、一元二次方程的解是同一個量的不同表現(xiàn)形式。
(2)二次函數(shù)、二次方程與二次不等式統(tǒng)稱“三個二次”,它們常結(jié)合在一起,而二次函數(shù)又是“三個二次”的核心,通過二次函數(shù)的圖象貫穿為一體.有關(guān)二次函數(shù)的問題,利用數(shù)形結(jié)合的方法求解,密切聯(lián)系圖象是探求解題思路的有效方法.
【題型】單選題
【結(jié)束】
6
【題目】已知a,b,c分別是△ABC的內(nèi)角A,B,C的對邊,若△ABC的周長為2(+1),且sin B+sin C=sin A,則a= ( )
A. B. 2 C. 4 D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com