已知函數(shù)f(x)=ax3+bx+c在點(diǎn)x=2處取得極值c-16,求a,b的值.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:計(jì)算題,導(dǎo)數(shù)的綜合應(yīng)用
分析:由題意,2是f′(x)=3ax2+b=0的解,且f(2)=c-16,從而得方程組,解出a,b的值.
解答: 解:由題意,2是f′(x)=3ax2+b=0的解,
且f(2)=c-16,
12a+b=0
8a+2b+c=c-16
,
解得:a=1,b=-12.
點(diǎn)評:本題考查了函數(shù)的極值的定義及應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸出的b的值為127,則圖中判斷框內(nèi)①處應(yīng)填的整數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(2x-1) 
1
2
<(3x) 
1
2
,則實(shí)數(shù)x的取值范圍( 。
A、(-1,+∞)
B、[
1
2
,+∞)
C、(-∞,-1)∪(
1
5
,+∞)
D、(
1
5
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若動直線x=a與函數(shù)f(x)=sinx和g(x)=cosx的圖象分別交于M,N兩點(diǎn),則|MN|的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,-
π
2
<φ<
π
2
)的圖象如圖所示,直線x=
8
,x=
8
是其兩條對稱軸.
(1)求函數(shù)f(x)的解析式及單調(diào)區(qū)間;
(2)若f(α)=
6
5
,且
π
8
<α<
8
,求f(
π
8
+α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有兩個投資項(xiàng)目A,B,根據(jù)市場調(diào)查與預(yù)測,A項(xiàng)目的利潤與投資成正比,其關(guān)系如圖甲,B項(xiàng)目的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖乙.(注:利潤與投資單位:萬元)

(1)分別將A,B兩個投資項(xiàng)目的利潤表示為投資B={x|x<a}(萬元)的函數(shù)關(guān)系式;
(2)現(xiàn)將x(0≤x≤10)萬元投資A項(xiàng)目,10-x萬元投資B項(xiàng)目.h(x)表示投資A項(xiàng)目所得利潤與投資B項(xiàng)目所得利潤之和.求h(x)的最大值,并指出x為何值時(shí),h(x)取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果x,y為非負(fù)數(shù)且x+2y=1則2x+3y2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},a3=5,a1+a2=4.?dāng)?shù)列{bn}的前n項(xiàng)和為Sn,且Sn=1-
1
2
bn
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)記cn=
1
2
anbn,求數(shù)列{cn}的前項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,
3
),
b
=(3,m),若向量
a
b
的夾角為60°,則m=
 

查看答案和解析>>

同步練習(xí)冊答案