已知點(diǎn)在經(jīng)過兩點(diǎn)的直線上,則的最小值為(  )

A.2            B.4            C.16               D.不存在

 

【答案】

B

【解析】

試題分析:根據(jù)題意,由于點(diǎn)在經(jīng)過兩點(diǎn)的直線上,因?yàn)锳B:y=(x-3),那么可x+2y=3,則,當(dāng)x=2y=1.5時(shí)成立故答案為B。

考點(diǎn):不等式的運(yùn)用

點(diǎn)評(píng):主要是考查了運(yùn)用均值不等式來(lái)求解最值的運(yùn)用,屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,經(jīng)過點(diǎn)(1,e),其中e為橢圓的離心率.且橢圓C與直線y=x+
3
有且只有一個(gè)交點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)不經(jīng)過原點(diǎn)的直線l與橢圓C相交與A,B兩點(diǎn),第一象限內(nèi)的點(diǎn)P(1,m)在橢圓上,直線OP平分線段AB,求:當(dāng)△PAB的面積取得最大值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年重慶市高三九合診斷考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)如圖,在平面直坐標(biāo)系中,已知橢圓,經(jīng)過點(diǎn),其中e為橢圓的離心率.且橢圓與直線 有且只有一個(gè)交點(diǎn)。

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)不經(jīng)過原點(diǎn)的直線與橢圓相交與A,B兩點(diǎn),第一象限內(nèi)的點(diǎn)在橢圓上,直線平分線段,求:當(dāng)的面積取得最大值時(shí)直線的方程。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直坐標(biāo)系中,已知橢圓,經(jīng)過點(diǎn),其中e為橢圓的離心率.且橢圓與直線 有且只有一個(gè)交點(diǎn)。

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)不經(jīng)過原點(diǎn)的直線與橢圓相交與A,B兩點(diǎn),第一象限內(nèi)的點(diǎn)在橢圓上,直線平分線段,求:當(dāng)的面積取得最大值時(shí)直線的方程。

 


查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年重慶市九校高三(上)聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,在平面直坐標(biāo)系xOy中,已知橢圓,經(jīng)過點(diǎn)(1,e),其中e為橢圓的離心率.且橢圓C與直線有且只有一個(gè)交點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)不經(jīng)過原點(diǎn)的直線l與橢圓C相交與A,B兩點(diǎn),第一象限內(nèi)的點(diǎn)P(1,m)在橢圓上,直線OP平分線段AB,求:當(dāng)△PAB的面積取得最大值時(shí)直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案