在等比數(shù)列{an}中,S3=
13
9
,S6=
364
9
,求an
考點(diǎn):等比數(shù)列的前n項(xiàng)和,等比數(shù)列的通項(xiàng)公式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:由已知條件利用等比數(shù)列的前n項(xiàng)和公式,列出方程組,求出等比數(shù)列的首項(xiàng)和公式,由此能求出an
解答: 解:∵在等比數(shù)列{an}中,S3=
13
9
,S6=
364
9

a1(1-q3)
1-q
=
13
9
a1(1-q6)
1-q
=
364
9
,
解得a1=
1
6
,q=3,
∴an=
1
6
3n-1
點(diǎn)評(píng):本題考查等比數(shù)列的通項(xiàng)公式的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,AD是△ABC的高,AE是△ABC外接圓的直徑,AB=6,AC=4,AD=3,則AE的長(zhǎng)為
 
;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U=R,集合A={x|x2-x-6≤0},B={x|
x-4
x
>0},那么集合A∩(∁UB)=( 。
A、{x|-2≤x<4}
B、{x|x≤3或x≥4}
C、{x|-2≤x≤0}
D、{x|0≤x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1的焦距為10,漸近線方程為y=2x,則C的方程為(  )
A、
x2
20
-
y2
5
=1
B、
x2
5
-
y2
20
=1
C、
x2
80
-
y2
20
=1
D、
x2
20
-
y2
80
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有3間房間,分配給3人,每個(gè)人都以相等的可能性進(jìn)入每一間房間,而且每間房間里的人數(shù)沒(méi)有限制,求不出現(xiàn)空房的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以一個(gè)直角分別為3和4得直角三角形的直角頂點(diǎn)為原點(diǎn),兩直角邊分別為x軸建立平面直角坐標(biāo)系,用斜二測(cè)畫(huà)法畫(huà)出其直觀圖,則直觀圖得面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB、CD是圓的兩條平行弦,BE∥AC,BE交CD于E、交圓于F,過(guò)A點(diǎn)的切線交DC的延長(zhǎng)線于P,PC=ED=1,PA=2.
(Ⅰ)求AC的長(zhǎng);
(Ⅱ)求證:BE=EF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
x2-ax+(a-1)lnx,a>1.
( I)討論函數(shù)f(x)的單調(diào)性;
( II)若a=2,數(shù)列{an}滿(mǎn)足an+1=f(an).
①若首項(xiàng)a1=10,證明數(shù)列{an}為遞增數(shù)列;
②若首項(xiàng)為正整數(shù),數(shù)列{an}遞增,求首項(xiàng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=2esinx在點(diǎn)x=0處的瞬時(shí)變化率為(  )
A、2B、-2C、2eD、-2e

查看答案和解析>>

同步練習(xí)冊(cè)答案