解:(1)f
1(θ)、f
3(θ)在0
,上均為單調(diào)遞增的函數(shù).
對(duì)于函數(shù)f
1(θ)=sinθ-cosθ,設(shè) θ
1<θ
2,θ
1、θ
2∈[0,
],則
f
1(θ
1)-f
1(θ
2)=(sinθ
1-sinθ
2)+(cosθ
2-cosθ
1),
∵sinθ
1<sinθ
2,cosθ
2<cosθ
1
∴f
1(θ
1)<f
1(θ
2)函數(shù)f
1(θ)在[0,
]上單調(diào)遞增.
(2)∵原式左邊=2(sin
6θ+cos
6θ)-(sin
4θ+cos
4θ)
=2(sin
2θ+cos
2θ)(sin
4θ-sin
2θcos
2θ+cos
4θ)-(sin
4θ+cos
4θ)
=1-sin
22θ=cos
22θ.
又∵原式右邊=(cos
2θ-sin
2θ)2=cos
22θ
∴2f
6(θ)-f
4(θ)=(cos
4θ-sin
4θ)(cos
2θ-sin
2θ).
(3)當(dāng)n=1時(shí),函數(shù)f
1(θ)在[0,
]上單調(diào)遞增,
∴
f1(θ)的最大值為f
1(
)=0,最小值為f
1(0)=-1.
當(dāng)n=3時(shí),函數(shù)f
3(θ)在[0,
]上為單調(diào)遞增.
∴f
3(θ)的最大值為f
3(
)=0,最小值為f
3(0)=-1.
下面討論正奇數(shù)n≥5的情形:對(duì)任意θ1、θ
2∈[0,
],且θ
1<θ
2
∵f
n(θ
1)-f
n(θ
2)=(sin
nθ
1-sin
nθ
2)+(cos
nθ
2-cos
nθ
1),
以及 0≤sinθ
1<sinθ
2<1 0≤cosθ
2<cosθ
1<1,
∴sin
nθ
1<sin
nθ
2 cos
nθ
2<cos
nθ
1,從而f
n(θ
1)<f
n(θ
2).
∴f
n(θ)在[0,
]上為單調(diào)遞增,
則f
n(θ)的最大值為f
n(
)=0,最小值為f
n(0)=-1.
綜上所述,當(dāng)n為奇數(shù)時(shí),函數(shù)f
n(θ)的最大值為0,最小值為-1.
分析:(1)設(shè) θ
1<θ
2,θ
1、θ
2∈[0,
],根據(jù)三角函數(shù)的特點(diǎn)判斷f
1(θ
1)-f
1(θ
2)=(sinθ
1-sinθ
2)+(cosθ
2-cosθ
1)<0,從而得出結(jié)論;
(2)首先利用余弦的二倍角公式化簡原式的左邊等于cos
22θ,同理原式右邊也等于cos
22θ,從而證明結(jié)論.
(3)當(dāng)n=1時(shí),f
1(θ)在[0,
]上單調(diào)遞增,求出最值;當(dāng)n=3時(shí),f
3(θ)在[0,
]上為單調(diào)遞增,求出最值;正奇數(shù)n≥5的情形,首先根據(jù)定義判斷出函數(shù)的單調(diào)遞增,從而得出f
n(θ)的最大值為f
n(
)=0,最小值為f
n(0)=-1.
點(diǎn)評(píng):本題考查了三角函數(shù)的最值,函數(shù)單調(diào)性的判定以及同角三角函數(shù)的基本關(guān)系,一般根據(jù)定義判斷函數(shù)的單調(diào)性,此題有一定難度.