如圖,在正四棱錐中,
(1)求該正四棱錐的體積;
(2)設(shè)為側(cè)棱的中點(diǎn),求異面直線
所成角的大。
(1)   (2)  
第一問利用設(shè)為底面正方形中心,則為該正四棱錐的高由已知,可求得
所以,
第二問設(shè)中點(diǎn),連結(jié)、,
可求得,,
中,由余弦定理,得

所以,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題8分)
如圖,點(diǎn)為斜三棱柱的側(cè)棱上一點(diǎn),于點(diǎn)于點(diǎn).

(1) 求證:;
(2) 在任意中有余弦定理:. 拓展到空間,類比三角形的余弦定理,寫出斜三棱柱的三個(gè)側(cè)面面積與其中兩個(gè)側(cè)面所成的二面角之間的關(guān)系式(只寫結(jié)論,不必證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱(側(cè)棱垂直與底面)中,,,,點(diǎn)D是的中點(diǎn).

⑴ 求證:;
⑵ 求證:平面;
⑶ 求直線與直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)如圖,已知三棱錐.

(1)求證:.
(2)求與平面所成的角.
(3)求二面角的平面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)l是直線,a,β是兩個(gè)不同的平面
A.若l∥a,l∥β,則a∥βB.若l∥a,l⊥β,則a⊥β
C.若a⊥β,l⊥a,則l⊥βD.若a⊥β, l⊥a,則l⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在一個(gè)正方體中,為正方形四邊上的動(dòng)點(diǎn),為底面正方形的中心,分別為的中點(diǎn),點(diǎn)為平面內(nèi)一點(diǎn),線段互相平分,則滿足的實(shí)數(shù)的值有(  。
A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

三棱錐中,兩兩垂直且相等,點(diǎn),分別是上的動(dòng)點(diǎn),且滿足,則所成角余弦值的取值范圍是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=,BC=4,在A1在底面ABC的投影是線段BC的中點(diǎn)O。

(1)證明在側(cè)棱AA1上存在一點(diǎn)E,使得OE⊥平面BB1C1C,并求出AE的長;
(2)求平面A1B1C與平面BB1C1C夾角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知正方形ABCD的邊長為2,AC∩BD=O,將正方形ABCD沿對(duì)角線BD折起,得到三棱錐A—BCD。
(1)求證:平面AOC⊥平面BCD;
(2)若三棱錐A—BCD的體積為,求AC的長。

查看答案和解析>>

同步練習(xí)冊(cè)答案