設(shè)函數(shù)
(1)若的最小值為3,求的值;
(2)求不等式的解集.
(1);(2)
【解析】
試題分析:本題考查絕對值不等式的解法和不等式恒成立問題,考查學(xué)生的分類討論思想和轉(zhuǎn)化能力以及計算能力.第一問,利用不等式的性質(zhì),得出的最小值,列出等式,解出的值;第二問,解含參絕對值不等式,用零點分段法去掉絕對值,由于已知中有和4的大小,所以直接解不等式即可,最后綜合上述所得不等式的解集.
試題解析:⑴因為
因為,所以當且僅當時等號成立,故
為所求. 4分
⑵不等式即不等式 ,
①當時,原不等式可化為
即
所以,當時,原不等式成立.
②當時,原不等式可化為
即所以,當時,原不等式成立.
③當時,原不等式可化為
即 由于時
所以,當時,原不等式成立.
綜合①②③可知: 不等式的解集為 10分
考點:1.不等式的性質(zhì);2.絕對值不等式的解法.
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河南省鄭州市畢業(yè)年級第一次質(zhì)量預(yù)測文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)
(1)若的最小值為3,求的值;
(2)求不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三第三次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
已知向量,設(shè)函數(shù).
(1)求的最小正周期與單調(diào)遞減區(qū)間;
(2)在中,、、分別是角、、的對邊,若的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三第四次高考仿真測試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知向量,,設(shè)函數(shù).
(1)求的最小正周期與單調(diào)遞增區(qū)間.(2)在中,、、分別是角、、的對邊,若的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆廣東省梅州市高一第二學(xué)期3月月考數(shù)學(xué)試卷 題型:解答題
(本小題滿分14分)已知向量,,其中設(shè)函數(shù).
(1)若的最小正周期為,求函數(shù)的單調(diào)遞減區(qū)間;
(2)若函數(shù)圖像的一條對稱軸為,求的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com