19.在三棱錐S-ABC中,∠ACB=90°,SA⊥平面ABC,SA=2,AC=BC=1,則異面直線SB與AC所成角的余弦值是(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{6}$

分析 如圖所示,把△ABC補(bǔ)成正方形EACB,則有AE∥BC,AC∥BE.即∠SBE就是異面直線SB與AC所成的角.解直角三角形SBE即可得到結(jié)果.

解答 解:如圖所示,把△ABC補(bǔ)成正方形EACB,則有AE∥BC,AC∥BE.
∴∠SBE就是異面直線SB與AC所成的角.
∵∠ACB=90°,SA⊥平面ABC,可得BC⊥面SAC,AE⊥面SAC,
∵SA=2,AC=BC=1,∴$SE=\sqrt{{2}^{2}+{1}^{1}}=\sqrt{5}$
∵AC⊥AE,AC⊥SA,SA∩AE=A,∴AC⊥面SAE,
∴BE⊥面SAE,即BE⊥SE.
在Rt△SEB中,cos$∠SBE=\frac{BE}{SB}=\frac{\sqrt{6}}{6}$.
故選:D

點評 本題考查了空間異面直線的夾角的計算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在三棱錐VABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC,O,M分別為AB,VA的中點.
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知△ABC中的內(nèi)角A,B,C所對的邊分別是a,b,c,若a=2,$C-B=\frac{π}{2}$,則c-b的取值范圍是($\sqrt{2}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.曲線y=3x5-5x3共有2個極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={x|x≤1},B={x|x2-x≤0},則A∩B=(  )
A.{x|x≤-1}B.{x|-1≤x≤0}C.{x|0≤x≤1}D.{x|1≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.等比數(shù)列{an}的前n項和為Sn,且4a1,2a2,a3成等差數(shù)列,若a1=1,則S10=( 。
A.512B.511C.1024D.1023

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=2x-e2x(e為自然對數(shù)的底數(shù)),g(x)=mx+1,(m∈R),若對于任意的x1∈[-1,1],總存在x0∈[-1,1],使得g(x0)=f(x1)成立,則實數(shù)m的取值范圍為( 。
A.(-∞,1-e2]∪[e2-1,+∞)B.[1-e2,e2-1]
C.(-∞,e-2-1]∪[1-e-2,+∞)D.[e-2-1,1-e-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.用數(shù)學(xué)歸納法證明:1+2+3+4+…+(2n+1)>2n2+3n,在驗證n=1時不等式成立時,不等式的左邊的式子是1+2+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,角A,B,C的對邊分別為a,b,c,btanB+btanA=-2ctanB,且a=8,△ABC的面積為$4\sqrt{3}$,則b+c的值為$4\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊答案