【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線為參數(shù),),其中,在以為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線,曲線.

(Ⅰ)求交點(diǎn)的直角坐標(biāo)系;

(Ⅱ)若相交于點(diǎn),相交于點(diǎn),求的最大值.

【答案】(1)交點(diǎn)坐標(biāo)為, .(2)最大值為

【解析】試題分析:(1)根據(jù) 將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,再聯(lián)立方程組求解交點(diǎn)的直角坐標(biāo),(2)曲線為直線,傾斜角為,極坐標(biāo)方程為,代入的極坐標(biāo)方程可得的極坐標(biāo),則為對(duì)應(yīng)極徑之差的絕對(duì)值,即,最后根據(jù)三角函數(shù)關(guān)系有界性求最值.

試題解析:解:(Ⅰ) ,

聯(lián)立得交點(diǎn)坐標(biāo)為,

(Ⅱ)曲線的極坐標(biāo)方程為,其中

因此得到的極坐標(biāo)為,

的極坐為

所以,

當(dāng)時(shí), 取得最大值,最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,順次連接橢圓的四個(gè)頂點(diǎn)得到的四邊形的面積為16.

(Ⅰ)求橢圓的方程;

(Ⅱ)過橢圓的頂點(diǎn)的直線交橢圓于另一點(diǎn),交軸于點(diǎn),若、成等比數(shù)列,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,短軸的兩個(gè)端點(diǎn)分別為.

(Ⅰ)若為等邊三角形,求橢圓的方程;

(Ⅱ)若橢圓的短軸長(zhǎng)為,過點(diǎn)的直線與橢圓相交于兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U={x|x≤4},集合A={x|﹣2<x<3},B={x|﹣3≤x≤2},求A∩B,(UA)∪B,A∩(UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)滿足f(0)=2和f(x+1)﹣f(x)=2x﹣1對(duì)任意實(shí)數(shù)x都成立.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)t∈[﹣1,3]時(shí),求y=f(2t)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,過的左焦點(diǎn)的直線,直線被圓截得的弦長(zhǎng)為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)的右焦點(diǎn)為,在圓上是否存在點(diǎn),滿足,若存在,指出有幾個(gè)這樣的點(diǎn)(不必求出點(diǎn)的坐標(biāo));若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中, 平面, // , , 分別為

線段, 的中點(diǎn).

(Ⅰ)求證: //平面

(Ⅱ)求證: 平面;

(Ⅲ)寫出三棱錐與三棱錐的體積之比.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=log 為奇函數(shù),a為常數(shù),
(1)求a的值;
(2)證明f(x)在區(qū)間(1,+∞)上單調(diào)遞增;
(3)若x∈[3,4],不等式f(x)>( x+m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

2)過橢圓的上頂點(diǎn)作直線交拋物線兩點(diǎn), 為原點(diǎn).

①求證: ;

②設(shè)、分別與橢圓相交于、兩點(diǎn),過原點(diǎn)作直線的垂線,垂足為,證明: 為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案