定理:若函數(shù)在閉區(qū)間[m,n]上是連續(xù)的單調(diào)函數(shù),且,則存在唯一一個(gè)。已知
(1)若是減函數(shù),求a的取值范圍。
(2)是否存在同時(shí)成立,若存在,指出c、d之間的等式關(guān)系,若不存在,請(qǐng)說(shuō)明理由。
(1)
(2)
(1)
依題意恒成立
即
顯然
,故a的取值范圍是 …………6分
(2)由(1)知:當(dāng)a=1時(shí),上是減函數(shù)
且
∴存在唯一 …………8分
同理由上是減函數(shù)
且[來(lái)源:Zxxk.Com]
知存在
即成立 …………10分
由
及的唯一性知
綜上可知,存在c,d使同時(shí)成立,
且 …………13分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
f(x2)-f(x1) |
x2-x1 |
f(b)-f(a) |
b-a |
b-a |
b |
b |
a |
b-a |
a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π |
2 |
π |
2 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=mx3+nx2(m、n∈R ,m≠0)的圖像在(2,f(2))處的切線(xiàn)與x軸平行.
(1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
(2)證明:對(duì)任意實(shí)數(shù)0<x1<x2<1, 關(guān)于x的方程:
在(x1,x2)恒有實(shí)數(shù)解
(3)結(jié)合(2)的結(jié)論,其實(shí)我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點(diǎn)x0,使得.如我們所學(xué)過(guò)的指、對(duì)數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理?xiàng)l件.試用拉格朗日中值定理證明:
當(dāng)0<a<b時(shí),(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年廣東省廣州六中高三(上)9月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com