如圖,已知四棱錐S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的一點(diǎn).

(1)求證:平面EBD⊥平面SAC;

(2)設(shè)SA=4,AB=2,求點(diǎn)A到平面SBD的距離;

 

【答案】

(1)見解析;       (2)

【解析】

(1)證明:∵SA⊥底面ABCD,BDÌ底面ABCD,∴SA⊥BD

∵ABCD是正方形,∴AC⊥BD

∴BD⊥平面SAC,又BDÌ平面EBD

∴平面EBD⊥平面SAC.   

 (2)解:設(shè)AC∩BD=O,連結(jié)SO,則SO⊥BD

由AB=2,知BD=

SO=

∴S△SBD BD·SO=··=6

令點(diǎn)A到平面SBD的距離為h,由SA⊥平面ABCD, 則·S△SBD·h=·S△ABD·SA

∴6h=·2·2·4  Þ  h=   ∴點(diǎn)A到平面SBD的距離為

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四棱錐S-ABCD的底面ABCD是邊長(zhǎng)為1的正方形,SA⊥平面ABCD,SA=2,E是側(cè)棱SC上的一點(diǎn).
(1)求證:平面EBD⊥平面SAC;
(2)求四棱錐S-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四棱錐S-ABCD的底面是邊長(zhǎng)為4的正方形,S在底面上的射影O落在正方形ABCD內(nèi),SO的長(zhǎng)為3,O到AB,AD的距離分別為2和1,P是SC的中點(diǎn).
(Ⅰ)求證:平面SOB⊥底面ABCD;
(Ⅱ)設(shè)Q是棱SA上的一點(diǎn),若
AQ
=
3
4
AS
,求平面BPQ與底面ABCD所成的銳二面角余弦值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四棱錐S-A BCD是由直角梯形沿著CD折疊而成,其中SD=DA=AB=BC=l,AS∥BC,AB⊥AD,且二面角S-CD-A的大小為120°.
(Ⅰ)求證:平面ASD⊥平面ABCD;
(Ⅱ)設(shè)側(cè)棱SC和底面ABCD所成角為θ,求θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•湖北模擬)如圖,已知四棱錐S-ABCD中,△SAD是邊長(zhǎng)為a的正三角形,平面SAD⊥平面ABCD,四邊形ABCD為菱形,∠DAB=60°,P為AD的中點(diǎn),Q為SB的中點(diǎn).
(Ⅰ)求證:PQ∥平面SCD;
(Ⅱ)求二面角B-PC-Q的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•江西模擬)(如圖)已知四棱錐S-ABCD的底面ABCD是菱形,將面SAB,SAD,ABCD 展開成平面后的圖形恰好為一正三角形S'SC.
(1)求證:在四棱錐S-ABCD中AB⊥SD.
(2)若AC長(zhǎng)等于6,求異面直線AB與SC之間的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案