在四面體PABC中,PAPB、PC兩兩互相垂直,P在△ABC內(nèi)的射影為O.試用向量法證明O為△ABC的垂心.

證明:如圖,設(shè)=a,=b,=c.?

PA,PB,PC兩兩互相垂直,?

a·b=0,b·c=0,c·a=0.?

PO⊥平面ABC,?

POAB,?

=0,?

=-=b-a,?

=(b-a)·c=b·c-a·c=0.?

又∵=-,?

·=-)=-=0,∴ABCO.?

同理可證AOBC,BOAC,?

O為△ABC的垂心.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在四面體P-ABC中,已知PA=BC=6,PC=AB=10,AC=8,PB=2
34
.F是線段PB上一點(diǎn),CF=
15
17
34
,點(diǎn)E在線段AB上,且EF⊥PB.
(1)證明:PB⊥平面CEF;
(2)求二面角B-CE-F的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在Rt△ABC中,CA⊥CB,斜邊AB上的高為h1,則
1
h
2
1
=
1
CA2
+
1
CB2
;類比此性質(zhì),如圖,在四面體P-ABC中,若PA,PB,PC兩兩垂直,底面ABC上的高為h,則得到的正確結(jié)論為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,如果點(diǎn)A在BC邊上的射影是D,△ABC的三邊BC、AC、AB的長(zhǎng)依次是a、b、c,則a=b•cosC+c•cosb,類比這一結(jié)論,推廣到空間:在四面體P-ABC中,△ABC、△PAB、△PBC、△PCA的面積依次為S、S1、S2、S3,二面角P-AB-C、P-BC-A、P-CA-B的度數(shù)依次為α、β、γ,則S=
S1cosα+S2cosβ+S3cosγ
S1cosα+S2cosβ+S3cosγ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在Rt△ABC中,CA⊥CB,斜邊AB上的高為h1,則
1
h
2
1
=
1
|CA|2
+
1
|CB|2
;
類比此性質(zhì),如圖,在四面體P-ABC中,若PA,PB,PC兩兩垂直,
底面ABC上的高為h,則得到的一個(gè)正確結(jié)論是
1
h2
=
1
|PA|2
+
1
|PB|2
+
1
|PC|2
1
h2
=
1
|PA|2
+
1
|PB|2
+
1
|PC|2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在四面體P-ABC中,對(duì)棱相互垂直,則點(diǎn)P在平面ABC上的射影為△ABC的( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案