(理科) 為了近似求出圓周率的值,有人設(shè)計如下方法來進(jìn)行隨機(jī)模擬:如圖,雙曲線
x2
a2
-
y2
b2
=1(a,b>0)的兩頂點為A1、A2,虛軸兩端點為B1、B2,兩焦點為F1、F2.若以A1A2為直徑的圓內(nèi)切于菱形F1B1F2B2,切點分別為A、B、C、D.現(xiàn)在隨機(jī)撒一把豆子(設(shè)其總數(shù)為N1)于菱形F1B1F2B2內(nèi),設(shè)落入圓O內(nèi)的豆子數(shù)為N2,則圓周率π≈
 
(試用N1,N2表示).
考點:幾何概型
專題:概率與統(tǒng)計
分析:先求出菱形的邊長,從而得到圓的半徑,寫出菱形和圓的面積,根據(jù)芝麻落在圓內(nèi)的概率等于圓的面積除以菱形的面積,列出一個關(guān)于π的關(guān)系式,做出π的估計值.
解答: 解:有題意可得,菱形的面積是2cb=2
a2+b2
,
圓的半徑是a,則圓的面積是πa2,
根據(jù)幾何概型的概率公式當(dāng)?shù)玫剑?span id="xu8glz8" class="MathJye">
πa2
2b
a2+b2
=
N2
N1
,
所以π=
2N2b
a2+b2
N1a2

故答案為:
2N2b
a2+b2
N1a2
點評:本題考查模擬方法估計概率,考查幾何概型,考查利用實際操作驗證數(shù)學(xué)中常用的π的值,是一個比較好的題目,希望引起同學(xué)們重視.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+ax+3若f(x)在區(qū)間[1,4]上為單調(diào)函數(shù),則a的范圍是
 
;
變式為:已知函數(shù)f(x)=x2+ax+3
(1)若y=f(x)在區(qū)間[1,4]有最大值10,則a的值為
 
;
(2)若f(x)=0在區(qū)間[1,4]內(nèi)有兩個不相等的實根,則a的范圍為
 
.;
(3)若f(x)=0在區(qū)間[1,4]內(nèi)有解.則a的范圍為
 

(4)若y=f(x)在區(qū)間[1,4]內(nèi)存在x0,使f(x0)>0,則a的范圍為
 
;
(5)若y=f(x)在區(qū)間[1,4]上恒為正數(shù),則a的范圍為
 

(6)設(shè)A={x|f(x)≤0},B=[1,4],若A≠B且A∩B=A,則a的范圍為
 
;
(7)設(shè)A={x|f(x)≤0},B=[1,4],若B⊆A,則a的范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,已知a1=10,a2為整數(shù),且在前n項和中S4最大.
(Ⅰ)求{an}的通項公式;
(Ⅱ)設(shè)bn=
13-an
3n+1
,n∈N*
(1)求證:bn+1<bn
1
3
; 
(2)求數(shù)列{b2n}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線ax-by-3=0與f(x)=xex在點P(1,e)處的切線相互垂直,則
a
b
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果橢圓的兩個頂點為(3,0),(0,4),則其標(biāo)準(zhǔn)方程為( 。
A、
x2
4
+
y2
3
=1
B、
y2
16
+
x2
9
=1
C、
x2
3
+
y2
4
=1
D、
x2
16
+
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知球O是棱長為1的正方體ABCD-A1B1C1D1的內(nèi)切球,則以B1為頂點,以球被平面ACD1截得的圓為底面的圓錐的全面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知PA⊥平面ABC,QC⊥平面ABC,PA=QC,求證:PQ∥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某小區(qū)想利用一矩形空地ABCD建造市民健身廣場,設(shè)計時決定保留空地邊上的一個水塘(如圖中陰影部分),水塘可近似看作一個等腰直角三角形,其中AD=60m,AB=40m,且△EFG中,∠EGF=90°,經(jīng)測量得到AE=10m,EF=20m.為保證安全同時考慮美觀,健身廣場周圍準(zhǔn)備加設(shè)一個保護(hù)欄.設(shè)計時經(jīng)過點G作一條直線交AB,DF于M,N,從而得到五邊形MBCDN的市民健身廣場.
(Ⅰ)假設(shè)DN=x(m),試將五邊形MBCDN的面積y表示為x的函數(shù),并注明函數(shù)的定義域;
(Ⅱ)問:應(yīng)如何設(shè)計,可使市民健身廣場的面積最大?并求出健身廣場的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

云南省鎮(zhèn)雄縣高坡村發(fā)生山體滑坡,牽動了全國人民的心,為了安置廣大災(zāi)民,救災(zāi)指揮部決定建造一批簡易房,每間簡易房是地面面積為100m2,墻高為3m的長方體樣式,已知簡易房屋頂每1m2的造價為500元,墻壁每1m2的造價為400元.問怎樣設(shè)計一間簡易房地面的長與寬,能使一間簡易房的總造價最低?最低造價是多少?

查看答案和解析>>

同步練習(xí)冊答案