【題目】觀察以下等式:

1312

13+23=(1+22

13+23+33=(1+2+32

13+23+33+43=(1+2+3+42

1)請用含n的等式歸納猜想出一般性結(jié)論,并用數(shù)學(xué)歸納法加以證明.

2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且ann3+n,求S10

【答案】(1)猜想13+23+33++n3=(1+2+3++n2;證明見解析(2)3080

【解析】

1)根據(jù)式子猜想出一般性結(jié)論,然后當(dāng)時,證明成立,假設(shè)時,式子也成立,然后對時的式子進(jìn)行化簡,從而證明結(jié)論成立;(2)對進(jìn)行分組求和,然后根據(jù)(1)中所得到的求和公式,進(jìn)行求和計(jì)算,得到答案.

1)猜想13+23+33++n3=(1+2+3++n2;

證明:當(dāng)n1時,左邊=1,右邊=1,等式成立;

假設(shè)nk時,13+23+33++k3=(1+2+3++k2

當(dāng)nk+1時,13+23+33++k3+k+13=(1+2+3++k2+k+13

,

可得nk+1時,猜想也成立,

綜上可得對任意的正整數(shù)n13+23+33++n3=(1+2+3++n2;

2)數(shù)列{an}的前n項(xiàng)和為Sn,且ann3+n,

S10=(13+23++103+1+2+3++10)=(1+2++102

552+553080

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

討論的單調(diào)性.

,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是指大氣中空氣動力學(xué)當(dāng)量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國標(biāo)準(zhǔn)采用世界衛(wèi)生組織設(shè)定的最寬限值,即日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標(biāo).某城市環(huán)保局從該市市區(qū)2017年上半年每天的監(jiān)測數(shù)據(jù)中隨機(jī)抽取18天的數(shù)據(jù)作為樣本,將監(jiān)測值繪制成莖葉圖如下圖所示(十位為莖,個位為葉).

(1)求這18個數(shù)據(jù)中超標(biāo)數(shù)據(jù)的平均數(shù)與方差;

(2)在空氣質(zhì)量為一級的數(shù)據(jù)中,隨機(jī)抽取2個數(shù)據(jù),求其中恰有一個為日均值小于30微克/立方米的數(shù)據(jù)的概率;

(3)以這天的日均值來估計(jì)一年的空氣質(zhì)量情況,則一年(按天計(jì)算)中約有多少天的空氣質(zhì)量超標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底邊為等邊三角形的斜三棱柱ABCA1B1C1中,AA1AB,四邊形B1C1CB為矩形,過A1C作與直線BC1平行的平面A1CDAB于點(diǎn)D

(Ⅰ)證明:CDAB;

(Ⅱ)若AA1與底面A1B1C1所成角為60°,求二面角BA1CC1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線過點(diǎn),且傾斜角為,在極坐標(biāo)系(與平面直角坐標(biāo)系取相同的長度,以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸)中,曲線的極坐標(biāo)方程為

1)求直線的參數(shù)方程與曲線的直角坐標(biāo)方程;

2)設(shè)曲線與直線交于點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)部分圖象如圖所示:

1)求的解析式;

2)求的單調(diào)區(qū)間和對稱中心坐標(biāo);

3)將的圖象向左平移個單位,再將橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,最后將圖象向上平移1個單位,得到函數(shù)的圖象,求函數(shù)上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某服裝公司生產(chǎn)得到襯衫,每件定價80元,在某城市年銷售8萬件,現(xiàn)在該公司在該市設(shè)立代理商來銷售襯衫代理商要收取代銷費(fèi),代銷費(fèi)為銷售金額的%(即每銷售100元收取元),為此,該襯衫每件價格要提高到元才能保證公司利潤.由于提價每年將少銷售萬件,如果代理商每年收取的代銷費(fèi)不小于16萬元,則的取值范圍是___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)滿足,則稱函數(shù)為“函數(shù)”.

試判斷是否為“函數(shù)”,并說明理由;

函數(shù)為“函數(shù)”,且當(dāng)時,,求的解析式,并寫出在上的單調(diào)遞增區(qū)間;

條件下,當(dāng)時,關(guān)于的方程為常數(shù)有解,記該方程所有解的和為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線.

(1)當(dāng)時,求的單調(diào)區(qū)間;

(2)若對任意時,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案