【題目】已知集合A={x|ax2+2x+1=0,a∈R},
(1)若A只有一個(gè)元素,試求a的值,并求出這個(gè)元素;
(2)若A是空集,求a的取值范圍;
(3)若A中至多有一個(gè)元素,求a的取值范圍.
【答案】(1)詳見(jiàn)解析;(2);(3)或
【解析】
(1)根據(jù)方程為一次方程與二次方程分類討論,對(duì)應(yīng)求解得結(jié)果,(2)根據(jù)方程無(wú)解條件列不等式,解得結(jié)果,(3)A中至多只有一個(gè)元素就是A為空集,或有且只有一個(gè)元素,所以求(1)(2)結(jié)果的并集即可.
(1)若A中只有一個(gè)元素,則方程ax2+2x+1=0有且只有一個(gè)實(shí)根,
當(dāng)a=0時(shí),方程為一元一次方程,滿足條件,此時(shí)x=-,
當(dāng)a≠0,此時(shí)△=4-4a=0,解得:a=1,此時(shí)x=-1,
(2)若A是空集,
則方程ax2+2x+1=0無(wú)解,
此時(shí)△=4-4a<0,解得:a>1.
(3)若A中至多只有一個(gè)元素,
則A為空集,或有且只有一個(gè)元素,
由(1),(2)得滿足條件的a的取值范圍是:a=0或a≥1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(sinx,1), =( Acosx, cos2x)(A>0),函數(shù)f(x)= 的最大值為6.
(1)求A;
(2)將函數(shù)y=f(x)的圖象像左平移 個(gè)單位,再將所得圖象各點(diǎn)的橫坐標(biāo)縮短為原來(lái)的 倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象.求g(x)在[0, ]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,PA⊥底面ABCD, ,PA=2,E是PC上的一點(diǎn),PE=2EC.
(1)證明:PC⊥平面BED;
(2)設(shè)二面角A﹣PB﹣C為90°,求PD與平面PBC所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知有6名男醫(yī)生,4名女醫(yī)生.
(1)選3名男醫(yī)生,2名女醫(yī)生,讓這5名醫(yī)生到5個(gè)不同地區(qū)去巡回醫(yī)療,一個(gè)地區(qū)去一名教師,共有多少種分派方法?
(2)把10名醫(yī)生分成兩組,每組5人且每組都要有女醫(yī)生,共有多少種不同的分法?若將這兩組醫(yī)生分派到兩地去,又有多少種分派方法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)(x∈R)滿足f(﹣x)=f(x),f(x)=f(2﹣x),且當(dāng)x∈[0,1]時(shí),f(x)=x3 . 又函數(shù)g(x)=|xcos(πx)|,則函數(shù)h(x)=g(x)﹣f(x)在 上的零點(diǎn)個(gè)數(shù)為( )
A.5
B.6
C.7
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對(duì)某體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:
將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?
非體育迷 | 體育迷 | 合計(jì) | |
男 | |||
女 | 10 | 55 | |
合計(jì) |
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方差D(X)
P( K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4﹣5:不等式選講
已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集為{x|﹣2≤x≤1}.
(1)求a的值;
(2)若 恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=﹣ n2+kn(其中k∈N+),且Sn的最大值為8.
(1)確定常數(shù)k,求an;
(2)求數(shù)列 的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
(1)[選修4﹣1:幾何證明選講]
如圖,AB是圓O的直徑,D,E為圓上位于AB異側(cè)的兩點(diǎn),連接BD并延長(zhǎng)至點(diǎn)C,使BD=DC,連接AC,AE,DE.
求證:∠E=∠C.
(2)[選修4﹣2:矩陣與變換]
已知矩陣A的逆矩陣 ,求矩陣A的特征值.
(3)[選修4﹣4:坐標(biāo)系與參數(shù)方程]
在極坐標(biāo)中,已知圓C經(jīng)過(guò)點(diǎn)P( , ),圓心為直線ρsin(θ﹣ )=﹣ 與極軸的交點(diǎn),求圓C的極坐標(biāo)方程.
(4)[選修4﹣5:不等式選講]
已知實(shí)數(shù)x,y滿足:|x+y|< ,|2x﹣y|< ,求證:|y|< .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com