【題目】一個袋中有若干個大小相同的黑球、白球和紅球.已知從袋中任意摸出1個球,得到黑球的概率是 ;從袋中任意摸出2個球,至少得到1個白球的概率是 . (Ⅰ)若袋中共有10個球,
(i)求白球的個數;
(ii)從袋中任意摸出3個球,記得到白球的個數為ξ,求隨機變量ξ的數學期望Eξ.
(Ⅱ)求證:從袋中任意摸出2個球,至少得到1個黑球的概率不大于 .并指出袋中哪種顏色的球個數最少.
【答案】解:(Ⅰ)(i)記“從袋中任意摸出2個球,至少得到1個白球”為事件A, 設袋中白球個數為x,則P(A)=1﹣ = ,
解得x=5,∴白球個數是5個.
(ii)隨機變量ξ的取值為0,1,2,3,
P(ξ=0)= = = ,
P(ξ=1)= = ,
P(ξ=2)= ,
P(ξ=3)= = = ,
∴ξ的分布列為:
ξ | 0 | 1 | 2 | 3 |
P |
Eξ= = .
證明:(Ⅱ)設袋中有n個球,其中y個黑球,
由題意,得y= n,
∴2y<n,2y≤n﹣1,
∴ ,
記“從袋中任意取出兩個球,至少有1個黑球”為事件B,
則P(B)= ,
∴白球的個數比黑球多,白球個數多于 ,黑球個數少于 ,
故袋中紅球個數最少
【解析】(Ⅰ)設袋中白球個數為x,由對立事件概率計算公式得:1﹣ = ,由此能求出白球個數.(ii)隨機變量ξ的取值為0,1,2,3,分別求出相應的概率,由此能求出隨機變量ξ的數學期望Eξ(Ⅱ)設袋中有n個球,其中y個黑球,由題意,得y= n,從而2y<n,2y≤n﹣1,進而 ,由此能證明從袋中任意摸出2個球,至少得到1個黑球的概率不大于 .并得到袋中哪種顏色的球個數最少.
【考點精析】關于本題考查的離散型隨機變量及其分布列,需要了解在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的定義域為R,且f(x)不為常值函數,有以下命題: ①函數g(x)=f(x)+f(﹣x)一定是偶函數;
②若對任意x∈R都有f(x)+f(2﹣x)=0,則f(x)是以2為周期的周期函數;
③若f(x)是奇函數,且對于任意x∈R,都有f(x)+f(2+x)=0,則f(x)的圖象的對稱軸方程為x=2n+1(n∈Z);
④對于任意的x1 , x2∈R,且x1≠x2 , 若 >0恒成立,則f(x)為R上的增函數,
其中所有正確命題的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學為研究學生的身體素質與課外體育鍛煉時間的關系,對該校200名高三學生的課外體育鍛煉平均每天運動的時間進行調查,如表:(平均每天鍛煉的時間單位:分鐘)
平均每天鍛煉 | [0,10) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) |
總人數 | 20 | 36 | 44 | 50 | 40 | 10 |
將學生日均課外課外體育運動時間在[40,60)上的學生評價為“課外體育達標”.
(Ⅰ)請根據上述表格中的統計數據填寫下面2×2列聯表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為“課外體育達標”與性別有關?
課外體育不達標 | 課外體育達標 | 合計 | |
男 | |||
女 | 20 | 110 | |
合計 |
(Ⅱ)將上述調查所得到的頻率視為概率.現在從該校高三學生中,抽取3名學生,記被抽取的3名學生中的“課外體育達標”學生人數為X,若每次抽取的結果是相互獨立的,求X的數學期望和方差.
參考公式: ,其中n=a+b+c+d.
參考數據:
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中, : (為參數),以原點為極點, 軸正半軸為極軸建立極坐標系,已知曲線.
(1)求的普通方程及的直角坐標方程,并說明它們分別表示什么曲線;
(2)若分別為, 上的動點,且的最小值為2,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,菱形ABCD的中心為O,四邊形ODEF為矩形,平面ODEF平面ABCD,DE=DA=DB=2
(I)若G為DC的中點,求證:EG//平面BCF;
(II)若 ,求二面角 的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com