已知點及橢圓上任意一點,則最大值為          。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分) 如圖,橢圓C: x2+3y2=3b(b>0).
(Ⅰ) 求橢圓C的離心率;
(Ⅱ) 若b=1,AB是橢圓C上兩點,且| AB | =,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓C:(a〉b>0)的左焦點為,橢圓過點P(
(1)求橢圓C的方程;
(2)已知點D(l,0),直線l:與橢圓C交于A、B兩點,以DA和DB為鄰邊的四邊形是菱形,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在橢圓內有一點,為橢圓的右焦點,在橢圓上有一點,
使的值最小,則此最小值為                (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點F,A分別是橢圓的左焦點、右頂點,B(0,b)滿足
,則橢圓的離心率等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

分別為橢圓的焦點,點在橢圓上,若;則點的坐標是 _________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
⑴求橢圓C的方程;
⑵設,是橢圓上的點,連結交橢圓于另一點,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

P為橢圓上一點,F(xiàn)1、F2是橢圓的左、右焦點,若使△F1PF2為直角三角形的點P共有8個,則橢圓離心率的取值范圍是            

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的焦點坐標是                   

查看答案和解析>>

同步練習冊答案