【題目】已知橢圓過(guò)點(diǎn),且的離心率為.

(1)求的方程;

(2)過(guò)的頂點(diǎn)作兩條互相垂直的直線與橢圓分別相交于兩點(diǎn).若的角平分線方程為,求的面積及直線的方程.

【答案】(1);(2).

【解析】試題分析:(1)根據(jù)橢圓離心率和橢圓上一點(diǎn)的坐標(biāo),列方程組,解方程組可求得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)出過(guò)點(diǎn)的直線方程,聯(lián)立直線的方程和橢圓的方程,求得點(diǎn)的橫坐標(biāo),由此得到,利用角平分線上的點(diǎn)到兩邊的距離相等建立方程,可求得斜率,由此求得三角形面積和直線方程.

試題解析:

(1)把點(diǎn)代入中,得,又,∴,

解得 ,

∴橢圓的方程為.

(2)設(shè)過(guò)斜率為的直線為,代入橢圓方程

,①

,

,②

在直線上取一點(diǎn),則到直線的距離為

點(diǎn)到直線的距離為,

由已知條件,解得.

代入②得, ,

的面積 .

由①得, .

的方程為,即.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集U為R,集合A={x|0<x≤2},B={x|x<﹣3,或x>1}
求:(I)A∩B;
(II)(CUA)∩(CUB);
(III)CU(A∪B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A,B滿足,集合A={x|x=7k+3,k∈N},B={x|x=7k﹣4,k∈Z},則A,B兩個(gè)集合的關(guān)系:AB(橫線上填入,或=)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線x+y=1與雙曲線 =1 (a>0,b>0)交于M、N兩點(diǎn),若以M、N兩點(diǎn)為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.
(1)求 的值;
(2)若0<a≤ ,求雙曲線離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某化工廠生產(chǎn)的某種化工產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸之間,其生產(chǎn)的總成本y(萬(wàn)元)與年產(chǎn)量x(噸)之間的函數(shù)關(guān)系式可近似地表示為
問(wèn):
(1)年產(chǎn)量為多少噸時(shí),每噸的平均成本最低?并求出最低成本?
(2)若每噸平均出廠價(jià)為16萬(wàn)元,則年產(chǎn)量為多少噸時(shí),可獲得最大利潤(rùn)?并求出最大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)是定義在(0,+∞)上的函數(shù),且對(duì)任意的正實(shí)數(shù)x1 , x2均有:(x1﹣x2)[f(x1)﹣f(x2)]>0,則不等式f(x)﹣f(8x﹣16)>0的解集是(
A.(0,+∞)
B.(0,2)
C.(2,+∞)
D.(2,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={2,4,5}則U(A∪B)(
A.{6,8}
B.{5,7}
C.{4,6,7}
D.{1,3,5,6,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017江西4月質(zhì)檢】已知橢圓的離心率為,且過(guò)點(diǎn).

(1)求橢圓的方程;

(2)過(guò)點(diǎn)且斜率大于0的直線與橢圓相交于點(diǎn),,直線,軸相交于,兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017四川資陽(yáng)4月模擬】共享單車是指由企業(yè)在校園、公交站點(diǎn)、商業(yè)區(qū)、公共服務(wù)區(qū)等場(chǎng)所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來(lái)越多地引起了人們的關(guān)注.某部門為了對(duì)該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿意度評(píng)分值百分制按照[50,60,[60,70,…,[90,100]分成5組,制成如圖所示頻率分直方圖.

求圖中的值;

已知滿意度評(píng)分值在[90,100]內(nèi)的男生數(shù)與女生數(shù)的比為2:1,若在滿意度評(píng)分值為[90,100]的人中隨機(jī)抽取4人進(jìn)行座談,設(shè)其中的女生人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案