分析:觀察已知可知符合兩角和的正弦,故可得f(x)=sin(2x-
),針對每個(gè)命題進(jìn)行判斷,排除錯(cuò)誤選項(xiàng)即可.
解答:解:∵
f(x)=sinxcos(x-)+cosxsin(x-)=
sin[x+(x-)]=sin(2x
-);
A,由于函數(shù)為非奇非偶函數(shù),故 A錯(cuò)誤
B:根據(jù)A可判斷B錯(cuò)誤
C:根據(jù)對稱中心是函數(shù)與軸的交點(diǎn),代入檢驗(yàn)可得f(
-)=-1可知C錯(cuò)誤
D:根據(jù)對稱軸處取得函數(shù)的最值,代入檢驗(yàn)可得
f()=sin=1可知D正確
故選D.
點(diǎn)評:本題主要考查了利用兩角和的正弦公式對函數(shù)化簡,進(jìn)一步考查三角函數(shù)的性質(zhì),三角函數(shù)的位置特征要準(zhǔn)確掌握,如對稱中心是函數(shù)與x軸的交點(diǎn),對稱軸經(jīng)過圖象的最高點(diǎn)或最低點(diǎn),奇函數(shù)的圖象關(guān)于原點(diǎn)對稱,偶函數(shù)的圖象關(guān)于 y軸對稱.