在等差數(shù)列{an}中,若a4+a6+a8+a10+a12=120,求a9-
1
3
a11的值.
考點:等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:由等差數(shù)列的性質(zhì)可知,項數(shù)之和相等的兩項之和相等且等于項數(shù)之和一半的項,把已知條件化簡后,即可求出a8的值,然后再由等差數(shù)列的通項公式化簡要求的式子為
2
3
a8,即可求出所求式子的值.
解答: 解:由a4+a6+a8+a10+a12=(a4+a12)+(a6+a10)+a8=5a8=120,解得a8=24.
∴a9-
1
3
a11=(a1+8d)-
a1+10d
3
=
2
3
a8=16.
點評:此題主要考查學(xué)生靈活運用等差數(shù)列的性質(zhì)化簡求值,等差數(shù)列的通項公式的應(yīng)用,是一道中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是R上的偶函數(shù),且x≥0,f(x)=2x-2•
x
,又a是函數(shù)g(x)=ln(x+1)-
2
x
的正零點,則f(-2),f(a),f(1.5)的大小關(guān)系是( 。
A、f(1.5)<f(a)<f(-2)
B、f(-2)<f(1.5)<f(a)
C、f(a)<f(1.5)<f(-2)
D、f(1.5)<f(-2)<f(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將曲線ρcosθ+2ρsinθ-1=0的極坐標(biāo)方程化為直角坐標(biāo)方程為( 。
A、y+2x-1=0
B、x+2y-1=0
C、x2+2y2-1=0
D、2y2+x2-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
1
4
,數(shù)列{an}滿足an+1=f(an),且f(a1)=0,
(1)求a1的值;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式:22x-(λ+1)•2x+λ<0 (λ∈R+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD是直角梯形,側(cè)棱面SA⊥面ABCD,AB垂直于AD和BC,CA=AB=BC=2,AD=1,M是棱SB的中點
(1)求證:AM∥面SCD;
(2)求證MD⊥SB;
(3)求三棱錐S-AMD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面四邊形ABCD中,AB=BC=CD=a,∠B=90°,∠C=135°沿對角AC將四邊形折成直二面角,求:二面角B-AD-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A∩M=B∩M=A∩B,A∪B∪M=A∪B,求證:M=A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓方程為
y2
a2
+
x2
b2
=1(a>b>0),長軸兩端點為A,B,短軸右端點為C.
(Ⅰ)若橢圓的焦距為4
2
,點M在橢圓上運動,且△ABM的最大面積為3,求該橢圓方程;
(Ⅱ)對于(Ⅰ)中的橢圓,作以C為直角頂點的內(nèi)接于橢圓的等腰直角三角形CDE,設(shè)直線CE的斜率為k(k<0),求k的值.

查看答案和解析>>

同步練習(xí)冊答案