精英家教網 > 高中數學 > 題目詳情
在數列{an}中,a1=1,an+1=an+(-1)n•2,則此數列的前4項之和為( )
A.16
B.8
C.0
D.-4
【答案】分析:數列{an}中,由a1=1,an+1=an+(-1)n•2,分別求出a2,a3,a4,由此能求出此數列的前4項之和S4的值.
解答:解:數列{an}中,∵a1=1,an+1=an+(-1)n•2,
∴a2=1-2=-1,
a3=-1+2=1,
a4=1-2=-1.
∴此數列的前4項之和S4=1-1+1-1=0.
故選C.
點評:本題考查數列的前四項和的求法,解題時要認真審題,注意數列的遞推公式的合理運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在數列{an}中,
a
 
1
=1
,an=
1
2
an-1+1
(n≥2),則數列{an}的通項公式為an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中數學 來源: 題型:

在數列{an}中,a 1=
1
3
,并且對任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求數列{bn}的通項公式;
(Ⅱ)設數列{
an
n
}的前n項和為Tn,證明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中數學 來源: 題型:

在數列{an}中,a=
12
,前n項和Sn=n2an,求an+1

查看答案和解析>>

科目:高中數學 來源: 題型:

在數列{an}中,a1=a,前n項和Sn構成公比為q的等比數列,________________.

(先在橫線上填上一個結論,然后再解答)

查看答案和解析>>

科目:高中數學 來源:2012-2013學年廣東省汕尾市陸豐市碣石中學高三(上)第四次月考數學試卷(理科)(解析版) 題型:解答題

在數列{an}中,a,并且對任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求數列{bn}的通項公式;
(Ⅱ)設數列{}的前n項和為Tn,證明:

查看答案和解析>>

同步練習冊答案