【題目】Fibonacci數(shù)列又稱黃金分割數(shù)列,因?yàn)楫?dāng)n趨向于無窮大時(shí),其相鄰兩項(xiàng)中的前項(xiàng)與后項(xiàng)的比值越來越接近黃金分割數(shù).已知Fibonacci數(shù)列的遞推關(guān)系式為

1)證明:Fibonacci數(shù)列中任意相鄰三項(xiàng)不可能成等比數(shù)列;

2Fibonacci數(shù)列{an}的偶數(shù)項(xiàng)依次構(gòu)成一個(gè)新數(shù)列,記為{bn},證明:{bn1-H2·bn}為等比數(shù)列.

【答案】1)詳見解析;(2)詳見解析.

【解析】

(1)利用反證法,假設(shè)存在,三項(xiàng)成等比數(shù)列,則,進(jìn)而由已知關(guān)系證得是無理數(shù),這與其遞推公式中反應(yīng)的為有理數(shù)矛盾,得證;

2)由題表示,進(jìn)而由已知的遞推關(guān)系表示出的遞推公式,再構(gòu)造等比數(shù)列,進(jìn)而由一一對(duì)應(yīng)關(guān)系計(jì)算出對(duì)應(yīng)參量,最后由等比數(shù)列定義得證.

(1)證明:(反證法)假設(shè)存在,三項(xiàng)成等比數(shù)列,則,

所以,所以,解得

由條件可知Fibonacci數(shù)列的所有項(xiàng)均大于0,所以,

Fibonacci數(shù)列的所有項(xiàng)均為整數(shù)(由遞推公式),所以應(yīng)該為有理數(shù),

這與(無理數(shù))矛盾(其相鄰兩項(xiàng)中的前項(xiàng)與后項(xiàng)的比值越來越接近黃金分割數(shù),而不是恰好相等),

所以假設(shè)不成立,故原命題成立.

2)證明:由條件得,,

所以

,

設(shè),則

所以

所以,所以為等比數(shù)列,公比為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最小正周期為4,其圖象關(guān)于直線對(duì)稱,給出下面四個(gè)結(jié)論:

①函數(shù)在區(qū)間上先增后減;②將函數(shù)的圖象向右平移個(gè)單位后得到的圖象關(guān)于原點(diǎn)對(duì)稱;③點(diǎn)是函數(shù)圖象的一個(gè)對(duì)稱中心;④函數(shù)上的最大值為1.其中正確的是( )

A. ①② B. ③④ C. ①③ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

設(shè)為實(shí)數(shù),函數(shù)。

(1)的單調(diào)區(qū)間與極值;

(2)求證:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,過點(diǎn)的直線與橢圓交于兩點(diǎn),延長(zhǎng)交橢圓于點(diǎn),的周長(zhǎng)為8.

(1)求的離心率及方程;

(2)試問:是否存在定點(diǎn),使得為定值?若存在,求;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】比較甲、乙兩名學(xué)生的數(shù)學(xué)學(xué)科素養(yǎng)的各項(xiàng)能力指標(biāo)值(滿分為5分,分值高者為優(yōu)),繪制了如圖所示的六維能力雷達(dá)圖,例如圖中甲的數(shù)學(xué)抽象指標(biāo)值為4,乙的數(shù)學(xué)抽象指標(biāo)值為5,則下面敘述正確的是(

A.甲的邏輯推理能力指標(biāo)值優(yōu)于乙的邏輯推理能力指標(biāo)值

B.甲的數(shù)學(xué)建模能力指標(biāo)值優(yōu)于乙的直觀想象能力指標(biāo)值

C.甲的六維能力指標(biāo)值整體水平優(yōu)于乙的六維能力指標(biāo)值整體水平

D.甲的數(shù)學(xué)運(yùn)算能力指標(biāo)值優(yōu)于甲的直觀想象能力指標(biāo)值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,過點(diǎn)的直線與橢圓交于兩點(diǎn),的周長(zhǎng)為8,直線被橢圓截得的線段長(zhǎng)為.

(1)求橢圓的方程;

(2)設(shè)是橢圓上兩動(dòng)點(diǎn),線段的中點(diǎn)為,的斜率分別為為坐標(biāo)原點(diǎn)),且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線lmxy=1,若直線l與直線x+mm﹣1)y=2垂直,則m的值為_____,動(dòng)直線lmxy=1被圓Cx2﹣2x+y2﹣8=0截得的最短弦長(zhǎng)為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為,,橢圓的長(zhǎng)軸長(zhǎng)與焦距之比為,過的直線交于兩點(diǎn).

(1)當(dāng)的斜率為時(shí),求的面積;

(2)當(dāng)線段的垂直平分線在軸上的截距最小時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過點(diǎn)A(﹣13),B(33)兩點(diǎn),且圓心C在直線xy+10上.

(1)求圓C的方程;

(2)求經(jīng)過圓上一點(diǎn)A(﹣1,3)的切線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案