設(shè)分別是橢圓的左右焦點。

(Ⅰ)設(shè)橢圓上的點到兩點、距離之和等于,寫出橢圓的方程和焦點坐標;

(Ⅱ)設(shè)是(1)中所得橢圓上的動點,求線段的中點的軌跡方程;

(Ⅲ)設(shè)點是橢圓上的任意一點,過原點的直線與橢圓相交于兩點,當(dāng)直線 , 的斜率都存在,并記為, ,試探究的值是否與點及直線有關(guān),不必證明你的結(jié)論。

(Ⅰ)橢圓C的方程為  

(Ⅱ) (Ⅲ)的值與點P的位置無關(guān),同時與直線L無關(guān)


解析:

(Ⅰ)由于點在橢圓上, ……………………… 1分

2=4,                                            ………………………2分  

橢圓C的方程為                        ………………………3分

焦點坐標分別為               ………………………4分

(Ⅱ)設(shè)的中點為B(x, y)則點 ………………………5分

把K的坐標代入橢圓中得………7分

線段的中點B的軌跡方程為   ………………8分

(Ⅲ)過原點的直線L與橢圓相交的兩點M,N關(guān)于坐標原點對稱 

設(shè)                  

在橢圓上,應(yīng)滿足橢圓方程,得  ……10分

          ………………11分

==       ………………13分

故:的值與點P的位置無關(guān),同時與直線L無關(guān),………………14分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•徐州一模)如圖,在平面直角坐標系xOy中,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距為2,且過點(
2
,
6
2
)

(1)求橢圓E的方程;
(2)若點A,B分別是橢圓E的左、右頂點,直線l經(jīng)過點B且垂直于x軸,點P是橢圓上異于A,B的任意一點,直線AP交l于點M.
(ⅰ)設(shè)直線OM的斜率為k1,直線BP的斜率為k2,求證:k1k2為定值;
(ⅱ)設(shè)過點M垂直于PB的直線為m.求證:直線m過定點,并求出定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,已知橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
1
2
,一條準線方程為x=4.
(1)求橢圓E的標準方程;
(2)若點A,B分別是橢圓E的左、右頂點,直線l經(jīng)過點B且垂直于x軸,點P是橢圓上異于A,B的任意一點,直線AP交l于點M,設(shè)直線OM的斜率為k1,直線BP的斜率為k2,求證:k1k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(-1,
3
2
)是橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)上一點,F(xiàn)1、F2分別是橢圓E的左、右焦點,O是坐標原點,PF1⊥x軸.
(1)求橢圓E的方程;
(2)設(shè)A、B是橢圓E上兩個動點,
PA
+
PB
PO
(0<λ<4,且λ≠2).求證:直線AB的斜率等于橢圓E的離心率;
(3)在(2)的條件下,當(dāng)△PAB面積取得最大值時,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(-1,
3
2
)是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)上一點F1、F2分別是橢圓C的左、右焦點,O是坐標原點,PF1⊥x軸.
①求橢圓C的方程;
②設(shè)A、B是橢圓C上兩個動點,滿足:
PA
+
PB
PO
(0<λ<4,且λ≠2)求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•安徽)設(shè)橢圓E:
x2
a2
+
y2
1-a2
=1
的焦點在x軸上
(1)若橢圓E的焦距為1,求橢圓E的方程;
(2)設(shè)F1,F(xiàn)2分別是橢圓E的左、右焦點,P為橢圓E上第一象限內(nèi)的點,直線F2P交y軸于點Q,并且F1P⊥F1Q,證明:當(dāng)a變化時,點P在某定直線上.

查看答案和解析>>

同步練習(xí)冊答案