在極坐標(biāo)系中,若直線l:ρ(cosθ+sinθ)=a與曲線C:ρ=1,θ∈(0,π)有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):簡(jiǎn)單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:把極坐標(biāo)方程化為直角坐標(biāo)方程,由條件數(shù)形結(jié)合求得實(shí)數(shù)a的取值范圍.
解答: 解:直線l:ρ(cosθ+sinθ)=a的直角坐標(biāo)方程為x+y-a=0,
曲線C:ρ=1,θ∈(0,π)化為直角坐標(biāo)方程為 x2+y2=1(y>0),
表示以原點(diǎn)為圓心、半徑等于1的半圓(位于x軸上方的部分).
當(dāng)直線和版圓相切時(shí),由
|0+0-a|
2
=1,求得a=
2
,
或 a=-
2
(舍去).
當(dāng)直線經(jīng)過點(diǎn)(1,0)時(shí),由1+0-a=0,求得a=1,
故直線和半圓有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)a的取值范圍是(1,
2
),
故答案為:(1,
2
).
點(diǎn)評(píng):本題主要考查把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,直線和圓的位置關(guān)系,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,公比q≠1,等差數(shù)列{bn}滿足b1=a1=3,b4=a2,b13=a3
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)求使
1
a1
+
1
a2
+…+
1
an
40
81
成立的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足:f(x+2)=f(x+1)-f(x),若f(2)=-lg2,f(3)=-lg5,則f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x2-mx+3,當(dāng)x∈(-2,+∞)時(shí),函數(shù)f(x)為增函數(shù),當(dāng)x∈(-∞,-2)時(shí),函數(shù)f(x)為減函數(shù),則m等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為
x=2+2cosθ
y=-
3
+2sinθ
(θ為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,若直線l上兩點(diǎn)A、B的極坐標(biāo)分別為(2,0)、(
2
3
3
,
π
2
),則直線l與圓C的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)同時(shí)滿足性質(zhì):①對(duì)任何x∈R,均有f(x3)=[f(x)]3成立;②對(duì)任何x1,x2∈R,當(dāng)且僅當(dāng)x1=x2時(shí),有f(x1)=f(x2).則f(-1)+f(0)+f(1)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
x+y-1≤0
x-y+1≥0
y≥0
且μ=x2+y2-4x-4y+
15
2
,則μ的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,則下列選項(xiàng)中能表示函數(shù)y=f(x)圖象的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn):-12+22-32+42+…+(-1)nn2

查看答案和解析>>

同步練習(xí)冊(cè)答案