【題目】某地級(jí)市共有中學(xué)生,其中有學(xué)生在年享受了“國家精準(zhǔn)扶貧”政策,在享受“國家精準(zhǔn)扶貧”政策的學(xué)生中困難程度分為三個(gè)等次:一般困難、很困難、特別困難,且人數(shù)之比為,為進(jìn)一步幫助這些學(xué)生,當(dāng)?shù)厥姓O(shè)立“專項(xiàng)教育基金”,對(duì)這三個(gè)等次的困難學(xué)生每年每人分別補(bǔ)助元、元、元.經(jīng)濟(jì)學(xué)家調(diào)查發(fā)現(xiàn),當(dāng)?shù)厝司芍淠晔杖胼^上一年每增加,一般困難的學(xué)生中有會(huì)脫貧,脫貧后將不再享受“精準(zhǔn)扶貧”政策,很困難的學(xué)生有轉(zhuǎn)為一般困難學(xué)生,特別困難的學(xué)生中有轉(zhuǎn)為很困難學(xué)生.現(xiàn)統(tǒng)計(jì)了該地級(jí)市年到年共年的人均可支配年收入,對(duì)數(shù)據(jù)初步處理后得到了如圖所示的散點(diǎn)圖和表中統(tǒng)計(jì)量的值,其中年份時(shí)代表年,時(shí)代表年,……依此類推,且(單位:萬元)近似滿足關(guān)系式.(年至年該市中學(xué)生人數(shù)大致保持不變)

(1)估計(jì)該市年人均可支配年收入為多少萬元?

(2)試問該市年的“專項(xiàng)教育基金”的財(cái)政預(yù)算大約為多少萬元?

附:對(duì)于一組具有線性相關(guān)關(guān)系的數(shù)據(jù),,…,,其回歸直線方程的斜率和截距的最小二乘估計(jì)分別為,.

【答案】(1) ;(2)1624萬元.

【解析】分析:(1)根據(jù)表中數(shù)據(jù),求出,代入公式求值,從而得到回歸直線方程,代入即可;

(2)通過由題意知年時(shí)該市享受“國家精準(zhǔn)扶貧”政策的學(xué)生共人.一般困難、很困難、特別困難的中學(xué)生依次有人、人、人,按照增長比例關(guān)系求解2017年時(shí)該市享受“國家精準(zhǔn)扶貧”政策的學(xué)生,即可得財(cái)政預(yù)算.

詳解:(1)因?yàn)?/span>,所以.

所以

,所以.

當(dāng)時(shí),年人均可支配年收入(萬元).

(2)由題意知年時(shí)該市享受“國家精準(zhǔn)扶貧”政策的學(xué)生共人.

一般困難、很困難、特別困難的中學(xué)生依次有人、人、人,年人均可支配收入比年增長.

所以年該市特別困難的中學(xué)生有人,

很困難的學(xué)生有人,

一般困難的學(xué)生有人.

所以年的“專項(xiàng)教育基金”的財(cái)政預(yù)算大約為(萬元).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足f(﹣x)=﹣f(x),f(x﹣2)=f(x+2),且x∈(﹣1,0)時(shí),f(x)=2x+ ,則f(log220)=(
A.﹣1
B.
C.1
D.﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從全校參加數(shù)學(xué)競賽的學(xué)生的試卷中抽取一個(gè)樣本,考察競賽的成績分布情況,將樣本分成5組,繪成頻率分布直方圖,圖中從左到右各小組的小長方形的高之比為1:3:6:4:2,最右邊一組頻數(shù)是6,請(qǐng)結(jié)合直方圖提供的信息,解答下列問題:

(1)樣本的容量是多少?

(2)列出頻率分布表;

(3)估計(jì)這次競賽中,成績高于60分的學(xué)生占總?cè)藬?shù)的百分比;

(4)成績落在哪個(gè)范圍內(nèi)的人數(shù)最多?并求出該小組的頻數(shù),頻率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐ABCD中,BC⊥CD,Rt△BCD斜邊上的高為1,三棱錐ABCD的外接球的直徑是AB,若該外接球的表面積為16π,則三棱錐ABCD體積的最大值為(
A.
B.
C.1
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解高一實(shí)驗(yàn)班的數(shù)學(xué)成績,采用抽樣調(diào)查的方式,獲取了位學(xué)生在第一學(xué)期末的數(shù)學(xué)成績數(shù)據(jù),樣本統(tǒng)計(jì)結(jié)果如下表:

分組

頻數(shù)

頻率

合計(jì)

(1)求的值和實(shí)驗(yàn)班數(shù)學(xué)平均分的估計(jì)值;

(2)如果用分層抽樣的方法從數(shù)學(xué)成績小于分的學(xué)生中抽取名學(xué)生,再從這名學(xué)生中選人,求至少有一個(gè)學(xué)生的數(shù)學(xué)成績是在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 , ,和兩點(diǎn)0,1),-1,0),給出如下結(jié)論:

①不論為何值時(shí), 都互相垂直;

②當(dāng)變化時(shí), 分別經(jīng)過定點(diǎn)A0,1)和B-1,0);

③不論為何值時(shí), 都關(guān)于直線對(duì)稱;

④如果交于點(diǎn),則的最大值是1;

其中,所有正確的結(jié)論的個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求f(2),f(x);

(2)證明:函數(shù)f(x)在[1,17]上為增函數(shù);

(3)試求函數(shù)f(x)在[1,17]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)離心率為 的橢圓E: + =1(a>b>0)的左、右焦點(diǎn)為F1 , F2 , 點(diǎn)P是E上一點(diǎn),PF1⊥PF2 , △PF1F2內(nèi)切圓的半徑為 ﹣1.
(1)求E的方程;
(2)矩形ABCD的兩頂點(diǎn)C、D在直線y=x+2,A、B在橢圓E上,若矩形ABCD的周長為 ,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為3,最小值為1.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線 與橢圓相交于, 兩點(diǎn)( 不是左右頂點(diǎn)),且以為直徑的圓過橢圓的右頂點(diǎn).求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案