(12分)如圖,在四棱錐中,底面,
,的中點(diǎn).
(Ⅰ)求和平面所成的角的大;
(Ⅱ)證明平面;
(Ⅲ)求二面角的正弦值

(1)
(2)略
(3)略
(Ⅰ)解:在四棱錐中,因底面,平面,故
,,從而平面.故在平面內(nèi)的射影為,從而和平面所成的角.
中,,故
所以和平面所成的角的大小為.……….4分
(Ⅱ)證明:在四棱錐中,
底面,平面,故.CDCA,所以CD平面PAC, 所以CDAE,AEPC,所以AE平面PCD,………….8分
(Ⅲ)過E作EMPC,連結(jié)AM,則AMPC,所以∠AME即二面角的平面角,設(shè)PA=a,AE=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在長(zhǎng)方體中,,且.

(Ⅰ)求證:對(duì)任意,總有;
(Ⅱ)若,求二面角的余弦值;
(Ⅲ)是否存在,使得在平面上的射影平分?若存在,求出的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

球的半徑擴(kuò)大為原來(lái)的2倍,它的體積擴(kuò)大為原來(lái)的              倍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題12分)如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E是MN的中點(diǎn)。

(1)求證:平面AEC⊥平面AMN;   (6分)
(2)求二面角M-AC-N的余弦值。  (6分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分) 已知在正方體ABCD —A1B1C1D1中,E、F分別是D1D、BD的中點(diǎn),G在棱CD上,且CG =

(1)求證:EF⊥B1C;
(2)求EF與G C1所成角的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題12分)
如圖,正方體ABCD—A1B1C1D1中,M、N分別為AB、BC的中點(diǎn).
(Ⅰ)求證:平面B1MN⊥平面BB1D1D;
(II)當(dāng)點(diǎn)P為棱DD1中點(diǎn)時(shí),求直線MB1與平面A1C1P所成角的正弦值;
            

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題10分)
如圖,在多面體ABCDEF中,四邊形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC.
(1)求證:平面ABFE⊥平面DCFE;
(2)求四面體B—DEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

對(duì)于不重合的兩個(gè)平面α與β,給定下列條件:
①存在平面γ,使得α、β都平行于γ;
②存在平面γ,使得α、β都垂直于γ;
③α內(nèi)有不共線的三點(diǎn)到β的距離相等;
④存在異面直線l,m,使得l//α,l//β,m//α,m//β;
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

平面六面體中,既與共面也與共面的棱的條數(shù)為 (  )
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案